• HR Analytics
    HR Analytics, People Analytics & Workforce Analytics有什么区别?为什么重要! HR Analytics, People Analytics & Workforce Analytics 我们经常看到,有啥区别呢? 技术、大数据和分析已经成为战略决策工具箱中的重要项目。其中一个原因是,在过去的30年里,商业价值的驱动因素已经发生了巨大的变化。在过去,商业价值是有形的。想想仓库里的股票,银行里的钱,房地产,等等。而且它们在资产负债表上都有记载。 如今的商业价值也可以与拥有一支能够颠覆市场并带来彻底创新的高素质劳动力有关。想想亚马逊的例子就知道了。他们的估值正在飙升,但这是因为他们的仓库业务,还是其优秀劳动力的真正价值? 公司正在积极寻找好的措施来获取这种劳动力价值。已经有一些倡议在资产负债表上将劳动力作为一种无形资产进行核算。当公司更加意识到他们劳动力的价值和潜力时,他们正在寻找衡量标准和方法,以最大限度地提高效益,优化业务成果。这正是人员分析的意义所在,也是企业积极探索如何实施和接受这种分析的原因。 HR Analytics, People Analytics & Workforce Analytics有什么区别? HR Analytics和People Analytics之间的区别是什么?从一开始,我们就必须澄清对HR Analytics, People Analytics & Workforce Analytics这些术语的误解。 在实践中,这些术语经常被交替使用,然而,它们是不一样的。HR Analytic捕捉和衡量人力资源团队本身的运作--例如,分析KPI(关键绩效指标),如员工流失率、招聘时间等。这样的分析只与人力资源团队有关,他们可以为之负责。 考虑到这一点,我们有必要了解People Analytics的无限范围。真正的People Analytics旨在涵盖人力资源、整个劳动力数据和客户洞察力。People Analytics灌输了测量和分析所有这些信息的方法,并将其编织在一起以改善决策和业务绩效。 然而,重要的是要理解Workforce Analytics包括整个工人群体(不仅仅是全职员工),并允许未来包括人工智能和机器人,这些都有可能取代一个组织内的现有工作。因此,在制定整体的劳动力战略时,劳动力分析更具有描述性。 管理方面的含义:如何利用People Analytics来实现业务成果 德勤(2018)报告称,人力资本分析People Analytics不仅可以帮助组织理解不断变化的工作场所,还可以提供洞察力来推动客户行为和参与。此外,CIPD(2018)最近的一项调查证实,使用人员数据可以改善业务成果。然而,重要的是要明白,实现People Analytics的一个关键障碍是缺乏任何形式的People Analytics战略--更不用说一个与业务战略相一致的连贯战略。 为了使企业在People Analytics方面获得成功,重要的是要有一个深思熟虑的战略,关注对整个企业真正重要的东西;这最终应该与人员的行动和行为相一致。因此,People Analytics不仅能使企业衡量和跟踪与业务战略有关的进展,而且还能协助人力资源部门通过规定未来的行动来管理整个人员战略,最终达到业务战略目标。 你觉得呢?一起来聊聊~  
    HR Analytics
    2021年04月27日
  • HR Analytics
    如何清洗人力资源分析数据?给你6个详细的步骤指南! 数据清理是人力资源分析中的关键因素。在你分析数据之前,你需要对数据进行 "清洁"。在这篇数据清理指南中,我们将解释为什么数据清理很重要,以及你如何进行数据清理。在文章的底部,我们附上了一个有用的数据清洗信息图。 在数据分析中常说的一句话是。"垃圾进,垃圾出"。 这句话的意思是,你可以在数据分析中投入大量的心思和精力,得出很多结果。但是,如果输入的数据不准确,这些结果就没有任何意义。事实上,这些结果甚至可能是有害的,因为它们会歪曲现实。 为什么数据清理很重要? HR数据往往是脏的。脏数据是指任何包含错误的数据记录。这可能是由不同的原因造成的。 最简单的是数据丢失。其他脏数据的例子有:同一工作职能的不同标签、同一人在一个系统中的多个记录、不同系统中的不匹配记录等等。 对这些数据进行清理和排序可能是一个耗时的过程。事实上,将所有这些不同的数据源的数据进行汇总,并使其符合要求,可能需要数周甚至数月的时间。这对于国际公司来说尤其如此。这些公司往往使用不同国家的不同系统来记录相同的数据。 数据的问题是很容易被弄脏。只要数据采集程序有丝毫的差异,数据就会变得不一致。 作为公司,你可以决定一次性清理所有的数据。有些公司选择了这种策略。然而,这可能需要大量的时间。因此,只清理你需要执行特定分析的数据是更明智的做法。 这种方法可以避免很多不必要的工作,并能更快地产生结果。根据第一次分析的结果,你可以决定需要清理哪些额外的数据来运行下一次分析。 数据清理有助于运行分析的顺利进行。它还有助于正常的人力资源报告,因为清理后的数据可以反馈到人力资源系统中。这将有助于提高数据质量,对后期的数据分析和数据汇总工作极为有利。 因此,数据清洗是人力资源分析过程中的必要步骤。 数据清洗的过程 在清理HR数据的时候,有两点是你需要了解的。第一是数据的有效性,第二是数据的可靠性。 当数据不有效或不可靠时,它可能告诉你的东西和你要找的东西不一样。下面的章节将对此进行更深入的探讨。理解这两个术语是很重要的。不过,如果你想找一个更实用的分步指南,可以向下滚动到下一节。 有效性 有效性是指你是否真正衡量了你需要衡量的东西。考核系统是否只测量个人的绩效,还是(也)测量谁最受经理的喜欢?数据是在整个组织中均匀地收集,还是有这样或那样的倾斜? 举个例子。波士顿市做了一个应用程序,他们的司机可以在智能手机上安装。该应用程序将测量道路上的颠簸,并通过GPS报告其位置。这些颠簸被记录下来,然后由城市道路服务部门进行修复。据一位发言人称, "该数据为城市提供了实时信息,它用于修复问题和计划长期投资"。 遗憾的是,并不是每个人都能平等地从这个系统中受益。该应用程序主要是由年轻人和较富裕社区的年轻人使用。同时,较贫困的社区并没有平等地获得智能手机和移动数据。这是数据中的一个明显的偏差。(公平性的问题) 你可以问自己的问题,以检查其有效性。 这些数据是否代表了我们想要测量的内容? 我们测量数据的方式是否存在偏差? 数据收集的方式是否清晰、一致? 数据中是否存在离群点? 可靠性 可靠性是指反复测量同样的事情并得到同样的结果。 当你在上午测量某人的参与度时,你希望得到的结果与下午再测量时的结果相似。这是因为参与度是一种随着时间的推移相对稳定的特质。 对于不同的测评人来说也是如此。如果你让比尔和吉姆给温迪的参与度打分,你希望比尔和吉姆都给温迪打出同样的分值。然而,当用来给温迪打分的量表是模糊的,可以有不同的解释,比尔和吉姆很可能会给温迪不同的评价。这就是所谓的评分者偏见,最好避免。 这听起来可能很明显,但事实并非如此。通常情况下,报告的数据取决于其他因素,如给出的指示,以及给出评分的人的心情。当我们谈论可靠性时,这就是一个大问题。当不同的人在一天/一周的不同时间,用同样的方法测量同样的数据,是否能得到同样的分数? 在这个过程中,程序起着重要的作用。在对绩效进行评分时,如果一个经理考虑的是员工过去六个月的绩效,而另一个经理只考虑过去两个星期的绩效,那么绩效评分很可能会有差异,不可靠。明确记录的程序将有助于不同的经理人以同样的方式衡量绩效。 在这种情况下,你应该问自己的问题是: 当同一事物被多次测量时,我们是否一致地得出了相同的结果? 我们是否使用了有明确记录的数据收集方法? 每一次的数据收集说明是否都得到了遵循? 一个简单的数据清理检查表 前面关于有效性和可靠性的问题可以帮助你分析你的输入数据是否足够准确,以产生可靠有效的结果。你的数据还需要符合其他几个标准。例如,你的数据必须是最新的。 过时的数据会产生潜在的不相关的结果,可能会破坏你的结果。此外,你需要检查你是否拥有所有的相关数据:记录经常会丢失。根据您分析数据的方式,这可能会或不会造成问题。有些分析方法允许数据缺失,而其他算法在数据缺失时则会很费劲。 数据缺失会缩小你的人群范围。另外,数据缺失的人群之间确实有可能存在共同的相似性。例如,如果一个部门仍然使用过时的绩效管理系统,遗漏了某些问题,这将意味着你将缺乏该部门所有员工的数据。这就会使你的结果严重偏向于其他部门,并威胁到结果的普遍性。 这是一份实用的检查表,里面有六个步骤来清理数据。 1.检查数据是否是最新的。 2.检查是否有重复出现的唯一标识符。有些人担任的职位不止一个。系统往往会为每个职位创建单独的记录。因此,这些人最终会在一个数据库中拥有多个记录。根据不同的情况,这些记录可能会被浓缩。 3.检查跨多个字段和合并的数据集的数据标签,看看是否所有的数据都匹配。 4.计数缺失值。当缺失的值在组织的特定部分中占比过高时,它们可能会歪曲你的结果。我们在前面的例子中看到了这种情况。此外,缺失值太多(即数据不足)的分析有可能会变得不准确。这也会影响到你的结果的通用性。 5.检查数字上的离群值。计算出描述性统计数字和量值。这些数据可以让你计算出潜在的离群值。最小值和最大值是一个很好的起点。 此外,您还可以计算出区间范围。您可以通过将量值3(Q3)和Q1之间的差值乘以1.5来实现。这个结果可以加在Q3上,再从Q1中减去。超出这个范围的值被认为是离群值。这篇维基百科的文章详细介绍了如何做到这一点。 6.定义有效的数据输出,并删除所有无效的数据值。这对所有的数据都是有用的。对字符数据进行明确的定义。例如,性别被定义为M或F,这些都是有效的数据值。任何其他值都被假定为无效值。这些数据可以很容易地被标记出来进行检查。 通过使用本指南,您将能够找到大多数数据不一致的地方。提示:始终仔细查看您的干净数据,您可能会发现自己遗漏的东西。祝好运!   以上由智能的AI翻译完成,仅供参考。来自AIHR 作者:Erik van Vulpen
    HR Analytics
    2020年05月03日
  • HR Analytics
    不要期待你的员工马上完美,工作的未来将以学习为中心 在最近与一些经验丰富的HR专业人员的互动中,他们非常渴望了解在HR职能中应用分析的细微差别。经常有人问我一个问题,即如何在组织中建立“内部” HR分析实践? 简单地说,我们可以说这一切都取决于组织、赞助的类型,以及创造、交付和维持的能力。但是,除了这些母性声明之外,肯定还有一个过程和一个可以采取的阶段性方法,它将确保从系统和能力的角度来看,你正在创建一个内部的人力资源分析实践。   阶段1:了解数据结构、流程和系统链接 这个阶段通常需要分析师“弄脏”数据,映射当前的HR程序和流程,并深入研究现有的IT系统以熟悉数据元素。对此步骤的精确关注还将有助于识别可用数据,数据结构和不同的系统集成。在此阶段,建议您提出以下问题,以确保您走上正轨: 当前正在捕获哪些数据元素,需要捕获什么? 是否有任何流程来确保数据的完整性,准确性和完整性? 是否有数据字典?   阶段2:建立正确的人力资源评估框架 作为一种实践,您已经知道要捕获什么数据以及仍然需要捕获什么数据,因此第一阶段将为所有未来的发展奠定基础。这个阶段将要求分析师与职能部门和业务部门紧密合作,以阐明业务目标和相关的职能目标。确定目标之后,继续创建“关键成功因素”,以突出目标的健康状况。这将确保指标与功能和业务的目标保持一致。 在此阶段可以帮助的一般问题是: 短期,中期和长期的业务目标是什么? 人力资源职能的目标如何与业务目标保持一致? 哪些是最相关的度量标准,为什么? 指标的公式是否符合行业或市场标准?还是专有的? 指标将如何比较?指标的目标是什么? 至此第二阶段已完成,您现在可以创建,监视和传达指标和记分卡,这很棒。但是您可能会注意到,这本质上仍然是“运营报告”。   阶段3:从信息中获取情报 到目前为止,您可能已经专注于监视指标,但在这一阶段,您必须摆脱简单的报告,而必须花费时间阅读指标,它们之间的关系,趋势等。在这个阶段,您可以进行各种操作使用“根本原因分析”或“ pareto分析”之类的技术进行诊断研究。这些将提供跨不同计划或员工生命周期事件的一些快速行动项目。 在此阶段要考虑的一组问题包括: 不同指标之间有关系吗?如果是,我们如何解释它们? 个人的结果和指标的组合告诉我们什么? 指标性能差异的根本原因是什么? 什么对该功能有效,可以根据指标进行哪些改进?等等   阶段4:通过预测分析产生见解 掌握了以上三个阶段后,您将已经积累了足够的情报,可以确定准备进行高级分析项目的最关键领域。这些领域必须在数据可用性方面做好准备,并且应该是功能和业务的优先事项之一,因为如果没有这两个领域中的任何一项,那么该倡议很可能会陷入僵局。 在此阶段可以参考的一般问题包括: 我们可以利用系统中的所有可用数据吗?我们可以将数据追溯到多久以前? 不同类型的数据的结构是什么? 我们可以将数据映射到员工生命周期中的不同事件吗? 历史数据中有什么噪音? 我们是否具备在内部应用高级定量技术的必要技能? 我们如何使用可用数据来预测新员工的成功,学习能力或员工的外逃风险? 虽然其目的是建立人力资源分析团队,但您必须将技能和能力进行正确的组合,以用实践创建一个强大的交付模型。这些阶段也可以像“波浪”一样运行,而并不总是像“轨道”一样运行,这取决于首先是数据的成熟度,然后是功能和组织的成熟度。   以上由AI翻译,仅供参考! 作者:Rohan Sharma 来源:https://www.linkedin.com/pulse/guide-setting-up-hr-analytics-team-rohan-sharma/
    HR Analytics
    2019年10月25日
  • HR Analytics
    HR Analytics入门的5个步骤 文/ Debanjan Sen 随着人力资源在业务中发挥更具战略性的作用,人力资源分析在将人力资源战略与业务成果联系起来方面发挥着核心作用。以下是在您的组织中实施HR分析的五步指南。 作为传统上依赖直觉和其“直觉”来做出决策的功能,人力资源正在经历一次重大变革。快速采用不同的人力资源技术,使组织能够轻松访问有价值的员工数据,从而做出决策。凭借大量强大的数据,人力资源领导者和高级管理人员现在可以希望了解其人力资本战略对业务绩效的影响。 什么是HR Analytics? 人力资源分析是将统计建模和定量科学应用于员工数据,以实现更好的业务成果。分析为人力资源领导者提供了跨组织关键人员问题的可操作见解。那么,您如何开始使用人力资源分析? 第1步:集中所有员工数据 人力资源分析之旅的第一步是将不同的员工数据来源统一到中央存储库中。员工数据通常驻留在不同的HR系统,Excel电子表格和纸质记录中。跨越脱节系统访问数据是低效且耗时的。为了确保数据的准确性和一致性,拥有单一事实来源(集中式数据存储库)至关重要。一旦您整合了所有员工数据,您现在可以确定关键绩效指标,这将有助于您了解其绩效与业务成果的关系。 第2步:创建HR仪表板 数据可视化对您的分析计划至关重要。人力资源仪表板可作为所有内部和外部人力资源数据的一站式服务。所有这些数据的图形/视觉再现将使您能够监控数据并对其进行基准测试,以获得对定义成功的HR指标的洞察。您可以轻松获得有关关键人力资源指标的实时信息,例如员工人数,每FTE成本,流失率,填写时间和租用成本。 第3步:构建分析功能 大多数人力资源团队仍然是分析概念的新手,缺乏领导成功分析部署计划的必要技能。因此,必须通过与组织的商业智能团队一起进行培训,培养人力资源团队的分析能力。在组织内构建强大的分析技能后,您可以为人力资本决策建立更大的业务环境。 第4步:将HR分析付诸实践 下一步是确定需要解决的业务问题。它可以提高保留率,识别高绩效者,或降低每次雇佣成本。这里的关键是将分析与明确的业务成果联系起来。您可以根据两个基本标准确定业务问题的优先级:业务影响和所需的工作量。影响与努力矩阵应该是分析之旅的起点。从具有高影响力和低成本的想法开始。 第5步:推动持续改进 一旦您开始使用HR分析来解决业务问题,您必须持续监控分析过程中的效率低下,错误和风险,跟进重复出现的问题并实施结构更改以防止将来出现这些问题。在对流程进行微调以消除任何不一致之后,您将能够继续下一步 - Predictive HR Analytics。 从招聘到员工培训和继任计划,人力资源分析在使人力资本实践与更广泛的业务目标保持一致方面发挥着关键作用。然而,尽管一段时间以来一直处于高级管理层议程,但大多数组织尚未释放其人员数据的潜力。缺乏关于分析方法和工具的知识一直是人力资源分析广泛采用的关键障碍。此外,用于整理人员数据的团队资源不足以及人力资源分析与业务成果报告之间缺乏一致性已经减缓了人力资源分析的采用。 如果没有企业领导者在其他职能部门所需的同等水平的分析理解,组织就无法做出决策。拥抱HR分析只是构建更加数据驱动的HR功能的第一步。希望本文中概述的框架可以让您的组织开始进行人力资源分析之旅。 以上为AI翻译,内容仅供参考。 原文链接:5 Steps to Get Started with HR Analytics
    HR Analytics
    2019年02月19日