• AI
    Forrester报告:2019年企业将缩减人工智能的规模 文/VASCO PEDRO,UNBABEL 上周,Forrester发布了两份关于人工智能的调查报告——《2019年预测:自动化》和《2019年预测:人工智能》。引人注目的是一个没有企业真正愿意承认的统计数据:2019年,整整10%的公司将把人类的专业知识带回人工智能领域,这一趋势将在很大程度上归因于人工智能的局限性。 让我们明确一点:我说的是商业上的人工智能驱动的自动化,而不是人工智能的进步,比如拯救生命。没有人认为人工智能在医疗保健和检测图像中癌细胞的训练算法上的标记值得后退一步。最好让机器里的医生继续工作。 但说到商业,Forrester揭示了一些残酷的事实。没有哪个企业愿意承认自己的人工智能出现了问题,而作为一个人工智能驱动解决方案组织的商业领袖,我对任何一家经历过人工智能“后果”的公司都感到好奇。然而,人工智能的退步数据并不令人惊讶,尤其是当你从客户服务的角度来看人工智能时。 是时候抑制AI的热情了? Forrester的报告令人惊讶的是,只有10%的公司明显在放弃人工智能。考虑到大量的公司正在自动化错误的事情,以及其他对人工智能完全不切实际的期望,我预计50%的受访者计划在2019年后退一步,把一些非常需要的人性带回循环。 公司开始超越人工智能的规模经济,意识到调查揭示的一些残酷事实;也就是说,自动化是伟大的,但实际上,只有当它使您更接近您的客户,它才伟大。如果人工智能正在取代服务台上的人工智能或在线聊天工具上的人工智能,那么在客户服务和满意度方面,你就会陷入连败的境地。 真相和证据都在外面,它告诉我们大多数人都喜欢与人接触。我们已经相互交流了几千年了,事实证明,客户服务是我们期待人类专家参与的一个领域。 这一主张经得起推敲。看看哈佛商学院(Harvard Business School)的莱恩·w·布尔(Ryan W. Buell)过去10年对自动化的广泛研究吧。他已经证明,使用atm机的客户比真人柜员机的客户对银行的满意度要低,他在大都会人寿保险公司(Metlife)的自动电话吊唁信息中标注的“死亡相关保险客户索赔”,无疑是一个危险信号,表明同情不应被归入人工智能。 自动化 也许我们能从这项研究中得到的最大教训是,在大多数情况下,人类不应该被完全排除在人工智能的圈子之外。我们需要以一种表明我们了解客户真正想要什么的方式为人们实现自动化,并以一种使用自动化来促进客户支持过程的方式实现自动化。 在人工智能和人类之间取得正确的平衡通常意味着使用自动化作为第一反应线。这吸引了绝大多数的客户,他们会尝试(甚至更喜欢)在联系现场代表之前自己解决问题。只要总是有切换到实时代表的选项,大多数企业都会发现这是自动化和人际接触之间的有效平衡。 这方面的一个很好的例子是自动化,它可以检测到用户在旅途中的任何一步都有重复出现的困难,并通过人工客户支持代理触发一个聊天窗口。另一个例子是自动化收集和交付客户信息给客户支持代理在联系开始前,以便实际的对话是知情的和个性化的。 它是关于使用自动化来帮助你的客户在他们需要的时候获得最好的,最快的,最个性化的客户支持。 2019年即将到来,这项研究的时机很好地提醒了我们,人工智能的到来是为了让我们能够自由地与客户进行良好的对话——不是简单直接的东西,而是最终建立和推动品牌忠诚度的真正问题。如果我们能让人类参与其中,并利用人工智能提高客户支持操作的效率,我们就能关注人工智能的潜力,而不是它的局限性。   以上为AI翻译,内容仅供参考。 原文链接:Businesses will scale back on AI in 2019
    AI
    2018年11月13日
  • AI
    数据成本是否扼杀了您的AI启动计划? 数据为AI初创公司提供了防御性的护城河:初创公司收集的用于培训AI模型的数据越多,该模型的表现就越好,新的参赛者难以赶上。然而,这些数据并非免费提供,许多人工智能初创公司认为他们的利润受到这笔额外费用的侵蚀。随着时间的推移,您可能希望减少对数据的投入,但目前尚不清楚如何预测何时会发生这种情况以及在何种程度上预测未来增长的模型。 与软件初创公司不同的是,产品开发埋藏在损益表中的研发成本之下,AI初创公司应将数据成本作为销售成本(COGS)的一部分。将数据视为COGS而非研发成本将有助于您发现扩大规模并降低成本的机会,从而提高利润率。 下面的数据价值链流程图显示了大多数AI初创公司如何获取和使用数据。首先,您将基础事实的片段记录为原始数据。您将原始数据存储在某处,然后建立流程或管道以维护和访问它。在AI模型中使用它之前,需要对数据进行注释,以便模型知道如何处理每个数据点。然后,训练有素的模型接收数据并返回推荐,然后您可以使用该推荐来为最终用户采取某种结果。该过程可以分为三个不同的步骤:获取数据,存储数据和注释数据以训练模型。每一步都会产生成本。 数据采集​​成本 在所有数据价值链中,某种传感器(物理设备或人类)首先需要通过捕获对现实的观察来收集原始数据。在这种情况下,数据采集的成本来自创建,分配和操作传感器。如果传感器是硬件,则必须考虑材料和制造成本; 如果传感器是人类,那么成本来自于招募并为他们提供制作和记录观察所需的工具。根据您的覆盖范围需要多大,您可能需要支付大量费用来分发传感器。某些用例可能需要以高频率收集的数据,这也可能会增加人工和维护成本。例如,观众测量公司尼尔森,面临所有这些成本,因为它既提供了框,也支付参与者报告他们在电视上观看的内容。在这种情况下,随着尼尔森的数据变得越来越有价值,其覆盖范围越广泛,规模经济就会降低单位数据采购成本。 在某些使用案例中,您可以通过向他们提供管理工作流程的工具(例如,自动电子邮件响应生成器),然后将他们捕获的数据存储在他们的工作流程中,将数据采集的工作和成本转移给最终用户。工作或观察他们与工具的交互并将其记录为数据。如果您选择免费分发这些工具,数据采集的成本将是客户获取工作的成本。或者,您可以选择为工作流工具收费,这可能会减慢和限制客户采用率,从而减少数据采集,同时抵消数据采集成本,具体取决于您的价格。 例如,我公司的一家投资组合公司InsideSales为销售代表提供了一个平台,可以拨打他们的潜在客户。当销售代表使用该平台时,它会记录有关交互的时间,模式和其他元数据,以及该销售渠道中的销售线索是否进展。该数据用于训练AI模型以推荐最佳时间和通信模式以联系类似的线索。这里,随着越来越多的用户进入平台,网络效应可能会增加工具的实用性,这可能会降低用户获取成本。 或者,在另一个实体已经建立数据收集管道的情况下确保战略合作伙伴关系可以进一步降低成本。我们的另一家公司Tractable采用计算机视觉实现汽车保险调节器的自动化工作,正在与几家领先的汽车保险公司合作,以获取受损车辆的图像,而无需投资向个别车主分发应用程序。 存储和管理成本 在数据存储和访问方面,初创公司面临另一个成本问题。除了您收集的数据之外,您可能还需要客户提供其他上下文数据以丰富您的模型。许多行业最近才开始数字化,因此即使潜在客户拥有丰富模型所需的数据,也不要认为数据易于访问。为了使用它,您可能不得不花费大量人力来进行低利润率的数据准备。 此外,如果数据分布在不同的系统和孤岛中,您可能需要花费大量时间来构建每个集成,然后才能使模型完全正常运行。一些行业围绕单片和特殊技术堆栈构建,使得集成很难在客户之间重用。如果集成服务提供商不可用,那么您的AI启动可能会发现自己陷入了为每个新客户构建自定义集成之前,它可以部署其AI系统。数据结构的方式也可能因客户而异,要求AI工程师花费额外的时间来规范数据或将其转换为标准化模式,以便可以应用AI模型。建立一个通用集成库可以降低成本,因为您可以在新客户中重复使用它们。 培训费用 大多数AI模型构建方法都要求您标记和注释数据,这是AI初创公司最大和最可变的成本之一。如果示例很简单或通常被理解为足以使外行人能够执行注释 - 例如,在图片中的所有苹果周围绘制一个框 - 您可以使用外包劳务服务(例如Mechanical Turk或图8)来执行注释。 然而,有时候,注释需要更专业的知识和经验,例如基于视觉线索确定苹果的质量和成熟度,或者石油钻井平台上的生锈斑块是否危险。对于这种更专业的劳动力,您可能需要建立一个内部专家注释团队并支付更高的工资。根据您的注释方式,您可能还需要构建自己的注释工作流工具,尽管像Labelbox这样的公司现在正在出现提供此类工具。 在某些AI应用程序中,最终用户是最有效的注释器,您可以通过设计产品来卸载注释成本,以便用户在数据与产品交互时标记数据。Constructor是我们的投资组合公司,提供针对电子商务的人工智能网站搜索,观察用户实际点击并购买每个搜索词的产品,使他们能够优化搜索结果以获得更高的销售额。这种注释不可能通过外包或专家搜索服务进行人工操作,并且可以保存Constructor,否则可能是重要的注释成本。 即使在您以高精度训练模型之后,当模型不确定如何解释新输入时,您偶尔也需要人类进行干预。根据模型如何为最终用户提供价值,该用户自己可以对模型进行更正或注释,或者您的创业公司可以通过采用质量控制“AI保姆”来处理异常。如果环境是您的建模是易变的并且以高速和常规速率变化,您可能希望保持稳定状态的注释器团队以根据需要使用新数据更新模型。 扩展AI业务 第一批成功的人工智能企业进入市场,提供无AI工作流程工具,以捕获最终培训AI模型并增强工具价值的数据。这些创业公司早期就能够实现软件利润,因为数据和人工智能是创业公司价值主张的次要因素。然而,随着我们转向人工智能的更专业应用,下一波人工智能创业公司将面临更高的启动成本,并需要更多的人力资源来为客户提供初始价值,使其成为低利润率的服务业务。 获得大量客户和数据将最终降低单位经济效益并构建关键的复合防御能力,但许多初创公司并不确切知道这一点到底有多远,以及他们需要做些什么来更快地实现目标。最好的人工智能初创公司将了解哪些杠杆可以在该途径上进行优化,并有意识地使用它们来进行正确的投资并快速扩展。   以上为AI翻译,内容仅供参考。 原文来源:Could data costs kill your AI startup?  
    AI
    2018年11月11日
  • AI
    JOSH BERSIN:人工智能招聘来临,面试会像恐龙一样消失吗? 文/JOSHBERSIN 公司做的最重要的事情之一就是雇人,这仍然是一门神秘的艺术。大多数公司会看求职者的工作经历,他们会打电话给推荐人,给他们做测试,然后带他们去面试。尽管如此,人力资源主管告诉我,他们仍然有25%的几率会犯错误。 为什么?如今,成功的标准是由认知能力、文化契合度以及求职者与公司抱负之间的契合度决定的。德勤(Deloitte)今年早些时候在Bersin完成的一项研究发现,业绩最好的公司在选择时使用这些“非简历”因素的可能性要高出90%,更能证明招聘变得多么复杂。 这种趋势越来越明显。大多数关于未来工作的研究显示,对个人沟通能力、创造性解决问题的能力以及通常被称为学习敏捷性(即求职者的学习能力和学习意愿)的需求在稳步增长。这些都是在你的大学背景,GPA,甚至工作经历中看不到的。 事实证明人工智能非常适合这个问题。供应商现在正成功地应用智能算法来创建测试、模拟,甚至分析视频求职面试,以提高招聘效率。而其中一些评估可能会扰乱市场中的一些重要力量。 这里有一些例子。 由哈佛大学(Harvard)和麻省理工学院(MIT)的神经科学家弗里达•波利(Frida Polli)创办的Pymetrics公司发展迅速。该公司开发了一系列认知和神经学测试,这些测试既有趣又容易进行,但在工程、销售和客户服务等方面具有直接的统计相关性。通过这些测试,该技术可以评估多达90种不同的性格特征,实际上消除了招聘中的偏见和歧视。联合利华(Unilever)、凯悦(Hyatt)、埃森哲(Accenture)和特斯拉(Tesla)等公司都对这一系统深信不疑,它们和其他公司几乎不需要看简历和教育背景就能招聘到这些职位的顶级候选人。 Pymetrics公司甚至通过共享算法审计工具,开放了他们的工具,以减少前瞻性偏差。他们理解在这些系统中减少偏见的巨大挑战,因为大多数培训数据是基于先前的雇佣成功。该公司最近获得了4000万美元的额外资金,其中包括Workday的投资者之一。 资金充裕的Imbellus公司刚刚宣布了一项1450万美元的融资计划,以帮助其继续开发基于模拟的评估系统,该系统目前被麦肯锡用来评估新员工的问题解决方案。我试过这些模拟测试,它们相当令人费解,也很有趣,它们显然测试了复杂的思维方式,远远超出了典型的SAT或其他测试。首席执行官丽贝卡•坎塔尔(Rebecca Kantar)专注于取代日益老化和过时的SAT考试(这是一个近10亿美元的市场),以改变公司招聘方式,从而改变大学评估优秀学生的方式。 HireVue是视频面试领域的先驱之一,现在每一分钟视频都能捕捉到100多万个关于求职者的有意义的数据元素,还能告诉经理求职者在回答问题时的诚实和自信。他们也有喜欢这项技术的客户,特别是在零售、客户服务和酒店领域的大量招聘。希尔顿的招聘多样性增加了16%,使用这项技术的效率大大提高。该公司目前拥有600多名客户,并提供了500多万次视频采访。 另一家由印度工程师创立、资金雄厚的公司PhenomPeople,已经彻底改造了招聘流程,将重点放在端到端营销上。招聘、招聘、内部职业流动和管理评估都是相互关联的,因此PhenomPeople决定建立一个看起来像职业门户的招聘系统。现在人工智能增强了这种能力,让招聘人员比以往更容易找到合适的人;候选人沟通是营销人员瞄准广告的方式;并跟踪候选人(内部和外部)的行为,以帮助个性化的求职体验。他们称之为人才关系管理(TRM),这是一种很好的描述方式。 当然,LinkedIn刚刚宣布了一系列新的基于人工智能的就业安置和搜索工具,以及它自己的求职者跟踪系统。LinkedIn的新工具可以让招聘人员更有效地找到合适的候选人,写出最有可能找到合适候选人的工作描述,现在提供了大量的数据,以帮助定位合适的人口、地点、经验和其他特征。所有这些都是为了消除这个错误的过程,让很多人来面试。 一个名为Orderboard的新公司。人工智能主要关注最抢手的工作(网络安全专家、人工智能工程师等),它不仅能评估能力和职位匹配度,还能将个人与被聘用团队的实际构成匹配起来。Orderboard公司的人工智能能够帮助招聘人员将他们所能找到的候选人的质量提高一倍以上,而且它的“吸引力算法”使公司几乎增加了50%的可能性,难以找到的候选人会接受电话或考虑一个职位。 此外,人工智能还有一个巨大的机会来改善筛选。像Mya(这一领域的先驱)、Olivia、Myra、IBM Watson招聘人员以及一个名为Yva的令人兴奋的聊天机器人正变得越来越聪明。我看过很多这样的工具,它们积累了越来越多关于候选人问的问题类型的情报,现在可以帮助招聘人员花更多的时间寻找和推销候选人,减少筛选的时间。 (聊天机器人市场非常庞大,供应商们应该开始关注应用领域。要确保你和供应商的谈话集中在招聘上,而不是一般的聊天。) 在人工智能和认知技术为人力资源增值的所有潜在领域中,这可能是最大的。虽然这项技术还很年轻,但成功的故事现在已经很普遍了,所以我认为每个公司都应该在他们要做的事情清单上确定基于人工智能的评估。 当然,所有这一切的风险在于人工智能以某种方式给系统引入了偏见,因此这些供应商正在努力确保他们的系统是公正、透明和安全的。在大多数情况下,公司会首先对这些系统进行测试,以确保这些算法不会无意中再现面试中的“人性化”偏见。 Facebook在这方面遇到了麻烦,因为其基于算法的招聘广告系统使得招聘人员可以根据年龄进行歧视。因此,您必须确保供应商精通这些问题。 对于求职者来说,我知道这有点残酷,但请记住,没有雇主愿意招错人。这些工具也会让你的生活变得更轻松,因为你不会觉得需要在面试中度过美好的一天来得到适合自己的工作。 我将继续观察这个空间的增长,但现在我非常乐观。(我追踪了1400多家人力资源科技公司,其中40多家专注于人工智能评估,这是最大的增长类别之一。) 作为一名分析师,我对评估领域进行了多年的研究,在这里我看到了价值的显著变化——由于招聘是我们作为领导者所做的最重要的事情,这是人力资源技术能够真正帮助一家公司超越的领域。   以上为AI翻译,内容仅供参考。 原文链接:AI Comes To Recruiting: Will Interviews Go The Way Of The Dinosaur?
    AI
    2018年11月03日
  • AI
    评估技术开发商Imbellus宣布获得1450万美元 A轮融资,目前已筹集2300万美元 据美通社2018年10月31日报道,基于模拟的评估技术开发商Imbellus宣布结束由Owl Ventures领导的1450万美元 A轮融资。该公司目前的总资金达到2300万美元,包括Upfront Ventures和Thrive Capital在内的先前投资者与Rethink Education一起参与了此次投资。 “Imbellus团队的成就代表了改善教育与就业生态系统评估的独特机会,” Owl Ventures的Ashley Bittner说。“这项工作对K-12系统的未来产生了影响。它是关于实现一种专注于解决问题,系统思考和创造力等技能的教育范式。” Imbellus不是将评估映射到大学的学术要求,而是与以创造力或解决问题等技能而闻名的组织合作,研究这些技能在现实世界中的应用。然后,Imbellus将观察到的技能和属性转化为学习科学和心理测量学的语言,以设计复杂的挑战,通过抽象的,基于模拟的评估将问题解决背景带入生活。 “我们正在努力将内容掌握与对潜在认知技能和能力的评估脱钩,以便不仅了解人们所知道的内容,还了解他们的思考方式,” Imbellus的创始人兼首席执行官Rebecca Kantar说。“我们的长期目标是重新定位教育系统,培养提出正确问题的思想,想象下一个要解决的问题,以及驾驭复杂系统。这是为了让所有学生都能做好公共教育的承诺,而不仅仅是对于最富有的10%。“ 自2016年推出以来,Imbellus的学习科学家,游戏开发人员,AI / ML工程师和心理测量学家团队与评估和评估最前沿的研究人员合作,包括国家评估,标准和学生测试研究中心(CRESST) )在加州大学洛杉矶分校。 “在我们发现自己陷入前所未有的混乱中,理解并准确衡量个人解决问题的无数方式对于更好地将人们与工作相匹配将变得越来越重要。在麦肯锡,了解人们如何思考对我们来说一直很重要,而不仅仅是他们所知道的,“ Keith McNulty说麦肯锡公司数字与人力分析总监,自2017年起与Imbellus合作,将其数字化,基于情景的评估作为招聘和招聘流程的一部分进行试点。“Imbellus”技术正在帮助我们将案例研究访谈的原则扩展到更广泛的人才,提供引人入胜的体验,使他们能够解决我们所解决的问题,同时向我们提供有关他们如何思考的准确而详细的信息关于问题。“ Imbellus评估不是评估内容知识和有限的学习技能,而是利用自然世界模拟环境中的多步骤丰富场景。与专注于工作记忆,处理速度或思维流动性的智商测试或神经科学游戏不同,Imbellus评估旨在量化将人类智能与机器智能区分开来的技能,例如批判性思维,决策制定和元认知。 。 支持Imbellus评估的技术平台通过使用虚拟世界来防止作弊和黑客攻击,该虚拟世界利用AI为测试者生成不断变化的场景,以完成任务,具有可靠的可比性。   以上为AI翻译,内容仅供参考。 原文链接:Imbellus Raises $23 million to Take on the Testing Establishment
    AI
    2018年11月03日
  • AI
    Eightfold使用AI为求职者匹配空缺职位 文/KYLE WIGGERS 招聘人员很难; 找一个合格的求职者并不容易。根据美国劳工统计局的数据,在医疗保健和金融服务等行业,平均招聘时间超过49天。招聘费用很高 - 单个职位的费用高达4,129美元。 这就是Eightfold的用武之地。今天的初创公司在其职业发现平台 - 个性化职业网站 - 中添加了一个新产品,该平台利用人工智能(AI)来解决所谓的人才缺口。 首席执行官兼联合创始人Ashutosh Garg在接受VentureBeat采访时解释说,大多数工作地点的问题是他们没有考虑到候选人的相关工作经验,技能,角色和教育背景。同时,在这个等式的雇佣方面,他们经常会阻碍那些分享,推广和候选人分类工具不足的公司。 “糟糕的职业网站和职位描述阻碍了申请过程,因为他们没有吸引合格的人才,更糟糕的是 - 劝阻不同的候选人,”加格说。“由于任何特定组织内的机会过剩,大多数候选人表示,求职中最艰难的一步就是找到合适的角色。” Eightfold带来了由领先的AI研究人员设计的高度个性化,机器学习驱动的工作匹配引擎(Eightfold的数据科学家在他们的名字上有6,000多项研究引用和80多项搜索和个性化专利。)职业网站有候选人创建个人资料并上传(或链接到)简历,Eightfold的专有匹配算法解析上下文信息。求职者可获得公司最适合的职位列表,以及对其技能的相关性评估。 实际上,个性化职业网站可以判断一个人在提交申请之前是否可能被考虑担任该职位。 Eightfold的AI应用并不止于此。它的聊天机器人可以使候选人有资格,收集简历,并回答有关技能,工作适应性,福利和文化的问题。除了使用人工智能之外,这家创业公司还从拥挤的工作现场竞争对手中脱颖而出,拥有SEO优化的工作页面,一键式申请流程,并支持公司简介上的自定义内容 - 包括视频。 Garg声称,它减少了80%的采访时间,同时降低了雇用成本。 “在Eightfold中,我们将焦点从模糊的要求列表转移到候选人最关心的内容 - 他们将要做的工作,他们将与之合作的人以及他们获得工作的可能性,”他补充说。 。“无论候选人是否最终被聘用,具有申请公司工作积极经验的候选人更有可能购买其产品,并建议其他人申请在那里工作。”   以上为AI翻译,内容仅供参考。 原文链接:Eightfold uses AI to match job seekers with open positions
    AI
    2018年11月03日
  • AI
    ZipRecruiter的Job Seeker Profiles使用AI来改善候选人匹配 据外媒报道本周二,在线就业平台ZipRecruiter公布了Job Seeker Profiles,这是ZipRecruiter针对iOS和Android的移动应用程序提供的新功能,它会提示求职者输入他们可能漏掉的信息,并利用人工智能(AI)的力量,从上传的简历中自动提取相关数据。 该公司表示,已有超过900万用户安装了iOS和Android应用程序,70%的用户在搜索新的工作机会时使用移动设备。 ZipRecruiter联合创始人兼首席执行官伊恩•西格尔(Ian Siegel)表示:“我们推出Profiles是为了帮助求职者讲述他们的故事。”“工作,以及人们寻找工作的方式,正在发生变化……通过个人资料,我们开发了一种灵活、智能的产品,最大限度地增加了他们找到合适雇主的机会,反之亦然,从而大大缩短了招聘时间。” Profiles就像一个简短的应用程序。他们的摘要包括技能,认证,期望薪水和职业目标,所有这些都可以通过简历手动输入或生成。但是它们也有一个智能层 - 配置文件提醒用户缺少信息并建议添加和增强功能。 信息求职者提供ZipRecruiter的人工智能匹配算法,提高候选人和潜在雇主的匹配质量和数量。 ZipRecruiter说,求职者的申请通常会在48小时内被浏览,80%的雇主会在第一天结束前找到一个合格的求职者。在2018年第一季度,每月有超过100万的候选人注册,大约750万的活跃职位列表。 在ZipRecruiter融资1.56亿美元之后(迄今为止,该公司已筹集了2.19亿美元资金),该公司推出了Job Seeker Profiles。这家成立8年的公司是美国最受欢迎的就业平台之一,该公司说,它已经帮助150多万家企业找到了员工,并收到了4.3亿份申请。 ZipRecruiter最近在人工智能上投入了大量资金。它使用机器学习通知潜在的新工作的员工清单通过电子邮件和短信(超过6400万仅通过电子邮件),并在6月推出一个AI工具——Candidate Calibration ——在其中向候选人提供工作岗位根据招聘人员的信号,每月1000万用户的数据库。 ZipRecruiter目前有200名工程师在开发人工智能的候选匹配和搜索解决方案,其中50名工程师在位于特拉维夫的新研发中心工作。 该公司在美国各地办公室的员工总数超过1000人(4年前约为150人)、英国和以色列。包括福特(Ford)、Netflix、富国银行(Wells Fargo)和汉堡王(Burger King)在内的150多万家公司都在使用该公司的招聘软件。   以上为AI翻译,内容仅供参考。 相关阅读: 美国求职平台ZipRecruiter完成6300万美元A轮融资 实现大规模盈利,招聘平台ZipRecruiter在低调中获得成功 原文链接:ZipRecruiter’s Job Seeker Profiles uses AI to improve candidate matches
    AI
    2018年10月24日
  • AI
    甲骨文云业务大打人工智能与安全牌,目标直指亚马逊 近年来甲骨文积极从传统软件公司转型为云服务提供商。 甲骨文在云服务领域的动作正不断深化。 北京时间10月23日,在由数据库巨头甲骨文举办的OpenWorld大会上,甲骨文公司推出一系列云产品更新,为包括企业资源规划(ERP)云和企业绩效管理(EPM)云,人力资本管理(HCM)云和数据云在内的云产品加入更多人工智能(AI)能力,并扩展其SaaS产品功能,增加了订阅管理服务。 甲骨文试图借助AI技术,为企业提供更“聪明”的产品。该公司应用产品研发执行副总裁Steve Miranda称,过去企业都是采用预编程方法,预先设置流程,有了机器学习技术后,一旦发现非寻常交易/流程,可以分析后直接分配给专项负责人员,提高效率。此外,包括人力资本管理方面,智能化的定制化推荐也具有重要意义,可帮助招聘团队缩短招聘周期,寻找最合适的求职者,并降低员工离职率。 在面向媒体和分析师开放的Demo环节,甲骨文展示了其AI技术在共享单车领域的应用,基于甲骨文的存储云、分析云,通过机器学习共享单车历史使用数据,并结合天气、事件日程等因素后,给出共享单车投放建议,解决供需问题。 这也是甲骨文将其企业级产品结合AI,逐步智能化的延续。2016年OpenWorld大会时,甲骨文正式提出其AI战略,其后在去年同一时间的OpenWorld大会中,甲骨文宣布在既有的云端产品线中整合AI技术,强化云端产品的功能,并称之为调适型智能App服务(Adaptive Intelligent App),旗下ERP、HCM、供应链管理云和客户体验云四大云产品首先加入。 区块链作为大会主题之一也得到展示。船运管理软件公司货讯通与甲骨文合作,推出货运文档区块链解决方案,提升供应链流程的效率。基于此合作,可保证货运文档可靠且可追溯,简化运输文档流程。 在主题演讲环节,甲骨文公司董事长兼首席技术官拉里·埃里森(Larry Ellison)介绍了网络防御的现状,并依旧对其云服务市场的最大竞争者亚马逊AWS发起攻击,他表示,“目前的网络防御还不够好”。为了解决这一问题,协助企业应对安全威胁,他宣布推出具备探测和预测能力的Oracle云基础设施安全服务更新。 考虑到云服务厂商近期安全事故频频,这一举动颇有针对性。 而甲骨文与亚马逊的关系,也随着双方在云计算领域的进一步布局使其竞争逐渐白热化。据CNBC报道,亚马逊计划于2020年初完全弃用甲骨文数据库技术,而埃里森回应称,亚马逊仍无法弃用甲骨文数据库。 但CNBC今日获得的一份亚马逊内部报告印证了埃里森的观点。报告显示,在亚马逊会员日(Prime Day)期间,可能因数据库原因,该公司电商网站出现了导致销售放缓的重大故障,数千个包裹延迟交付。一定程度上证明了甲骨文在数据库技术方面比亚马逊自有数据库产品更为稳定有效。 近年来甲骨文积极从传统软件公司转型为云服务提供商。9月公布的甲骨文财报显示,在截至8月31日的2019财年第一财季,其云服务和许可证支持部门的收入为66.1亿美元,比上年增长3.2%,低于FactSet调查中分析师预期的66.8亿美元。甲骨文若想依靠云服务跑赢亚马逊,显然需要进一步扩大市场规模。 相关阅读: Oracle推出Subscription Management和CX Unity,并对HCM Cloud和Data Cloud进行更新 甲骨文宣布收购企业数据库创企DataFox,用AI强化商业数据分析 甲骨文16亿美元收购Aconex 增强云计算业务 原文来源:甲骨文云业务大打人工智能与安全牌,目标直指亚马逊
    AI
    2018年10月24日
  • AI
    亚马逊事件之后:人工智能可以消除招聘中的偏见吗? 文/Sushman Biswas 人工智能(AI)可以模仿和放大人类的偏见,然而,当负责任地使用它可以帮助克服偏见,做出客观的,数据驱动的决定。 2014年,当亚马逊(Amazon)组建团队开发其新招聘引擎时,它曾被寄予很高的期望。这个实验性的解决方案使用人工智能来对候选人的简历进行评分,以识别出最优秀的人才。然而,在测试解决方案后不久,研究小组发现该系统并没有以性别中立的方式对候选人进行打分。与任何深度学习算法一样,该算法依赖于对历史数据的训练。不幸的是,嵌入其中的现实世界数据具有显示性别偏见的模式,而人工智能算法最终将其纳入了功能。 亚马逊的招聘引擎经过培训,可以通过观察提交给公司的10年简历中的模式来评估应聘者。不出所料,大多数申请者是男性,这反映了整个科技行业的性别差异。因此,招聘引擎告诉自己,男性候选人更可取。该公司对涉及到可识别性别信息的简历进行了处罚——例如,如果搜索引擎在简历中遇到一个词,说应聘者是“女子篮球队”的一员,那么该公司对该简历的评分就会较低。 不幸的是,这并不是人工智能程序显示出固有偏见的第一个例子。还记得微软的Tay聊天机器人吗?古老的GIGO格言——“垃圾进,垃圾出”仍然成立,在没有保障措施的情况下,向情报系统提供不完整或不准确的数据,仍然是构建公平工作世界的一大威胁。 凯特琳·麦格雷戈(Caitlin McGregor)在专门接受人力资源技术专家采访时表示:“这一切都取决于人工智能是用什么样的数据来做出招聘建议。”McGregor是Plum组织的联合创始人兼首席执行官。Plum组织是一个受I/O心理学启发的人工智能解决方案,旨在消除人类的偏见。“根据技能和知识(考虑学位和多年工作经验)来评估应聘者一直是标准。当招聘经理看到一份简历上写着哈佛(Harvard)或一份享有声望的无薪实习,就会产生偏见。”这些资格往往指向特权,而不是职位适合。因此,当基于人工智能的招聘方案依赖于技能和知识(比如简历和社交媒体刮刮工具)时,同样的偏见就会持续存在,但范围更大。 凯特琳认为,克服偏见的关键是克服我们对技能和知识的痴迷,专注于人才,包括创新、适应能力和沟通能力。“换句话说,你在简历上找不到的东西,”她说。 “人才的基础是通过衡量应聘者的个性、解决问题的能力和社会智商来获得的特质和能力的结合。”数十年的行业/组织心理学研究不仅证明,在预测未来成功方面,人才的能力是技能和知识的四倍,而且他们的偏见也要小得多。 像凯特琳这样的人力资源主管有充分的理由批评传统的雇佣方式,因为这种方式会导致认知偏见。她表示:“我认为,一般来说,人才专业人士想要评估应聘者的不仅仅是一张纸,他们只是不知道如何评估。”“第一步是承认,我们把简历作为招聘过程的第一步,这是毋庸置疑的。”人工智能可能会有所帮助——但如果我们真的打算超越简历,让招聘过程更少偏见、更有预见性,那就意味着我们还必须超越简单地自动化简历关键字匹配的人工智能。 人工智能在招聘中带来的真正机遇是可伸缩性和自动化,可以应用于工业/组织心理学等曾经依赖(通常是昂贵的)咨询服务的实践。“人才数据的可预测性和客观性,现在可以向所有人、而不仅仅是《财富》(Fortune) 500强企业普及,”凯特琳(Caitlin)表示。 人们普遍存在的一个误解是,人工智能只是将既定的实践自动化;然而,复杂的人工智能程序的发展使得解决方案不再是自动化的重复性任务,而是解决人类认知能力有限而无法解决的复杂问题。凯特琳相信,“这是一种人工智能,它可以超越简单的简历筛选,实际上做出更客观、更有预见性的决定——只要输入正确的数据。” 人工智能会取代人工招聘吗? 尽管各行各业都在采用黑箱解决方案,但这种替代人类的解决方案是一种毫无根据的恐惧。人工智能可以基于模式识别或候选匹配为推荐服务;然而,把工作卖给候选人,或者与候选人建立关系,最终将取决于一个有人情味的招聘人员。 凯特琳说:“虽然人工智能听起来很老套,但它确实能让招聘过程变得更‘人性化’,因为它消除了繁琐的重复性工作,让招聘人员能够专注于人际关系。” 选择合适的AI招募方案 当人力资源技术领域的几乎所有供应商都声称已将人工智能集成到其工作流中时,您如何评估满足招聘需求的人工智能解决方案? 凯特琳分享了人力资源主管在专注于人工智能招聘解决方案之前必须考虑的三个关键因素。 首先要考虑的是可伸缩性。人工智能在招聘中的作用是解决昂贵、低效的咨询服务和招聘团队渠道的问题。如果你使用的人工智能没有为你节省时间、金钱和资源,那么它就没有完成它的工作。人工智能产品也应该能够随着公司的成长而成长。如果这不是一个长期的解决方案,那么这项技术就没有达到它的目的。 第二点是一致性。凯特琳对人力资源主管寻求人工智能招聘解决方案的建议是,确保人工智能能够准确地胜任所有组织职能部门的候选人。解决方案必须能够评估工程角色或中层管理角色的候选人,就像评估销售角色的候选人一样容易。 第三个也是最重要的参数是人工智能解决方案用于评估的数据类型。“市场上大量招聘人工智能解决方案使用的是网上搜集的数据。因此,大多数雇佣人工智能解决方案都使用相同的数据集!你不会想有一天抬头看一眼,就发现你的整个办公室都是由一个叫贾里德的白人组成的,他上了常春藤盟校,打过长曲棍球,读过《哈利·波特》(这是我在一个工业组织心理学协会会议上听到的一个真实的例子)!你想要看到一个由拥有对你的公司最重要的品质的人组成的团队。这就是所谓的“垃圾输入,垃圾输出”的意思——如果你的人工智能依赖于无用的数据,你就会得到无用的结果。因为人工智能不是魔法。为了让自己处于建立一个多样化团队的位置,重要的是要着眼于人才获取人工智能解决方案,以创建和综合客观、预测和新数据,”凯特琳说。 总之,人工智能应该被视为一个机会,而不是社会平等的阻碍者。毕竟,从算法中消除偏见比从人类中消除偏见要容易得多,因此人工智能最终有潜力构建一个公平、多样化和公平的工作世界。   以上为AI翻译,观点仅供参考。 原文链接:Can Artificial Intelligence Eliminate Bias in Hiring?  
    AI
    2018年10月15日
  • AI
    亚马逊用AI筛简历被曝“性别歧视”,现已关闭应用 10月11日消息,据路透社报道,亚马逊的机器学习专家们发现了一个大问题,他们的新人工智能(AI)招聘引擎涉嫌歧视女性,为此已将其关闭。 一个戴有色眼镜的AI 五名知情人士表示,自2014年以来,这个团队始终在开发电脑程序以审查求职者的简历,目的是将寻找顶尖人才的任务自动化。自动化一直是亚马逊在电子商务领域占据主导地位的关键,无论是在配送中心内部还是制定价格决策时。 知情人士说,亚马逊的试验性招聘工具使用AI给应聘者打分,分数从一星到五星不等,就像购物者给亚马逊网站上的产品打分一样。其中一人说:“每个人都想要这个‘圣杯’。亚马逊真的想将其打造成引擎,给它100份简历,它会列出前五人,我们会聘用他们。” 但到2015年,亚马逊意识到其新系统并没有对软件开发人员和其他技术职位求职者进行性别中立式的评估。这是因为,亚马逊的电脑模型经过了培训,通过观察过去10年被提交给该公司的简历找出固有模式,并以此来审查应聘者。其中大部分简历来自男性,这也反映了男性在科技行业占主导地位的现状。 实际上,亚马逊的系统告诉自己,男性求职者更受青睐。这套系统对简历中含有“女子象棋俱乐部队长”等语句中的“女子”一词特别敏感。据知情人士透露,它还下调了两所女子学院的毕业生评级,但他们没有具体说明这些学校的名字。 亚马逊编辑了这些程序,使它们对这些特定的术语保持中立。但上述知情人士说,这并不能保证其AI系统不会设计出其他可能被证明具有歧视性的筛选求职者的方法。据不愿透露姓名的知情人士说,亚马逊最终在去年年初解散了团队,因为高管们对这个项目感到失望。 亚马逊的招聘人员在搜索新员工时查看了该工具提供的推荐信息,但他们表示,他们从来没有仅仅依靠其排名来做出判断。亚马逊拒绝就招聘引擎或其面临的挑战置评,但该公司表示,它致力于打造职场多样性和平等。 男性本身就多? 这些数据有什么问题呢?据路透社分析,可能是因为科技行业中的大部分技术岗位都是男性在做。自2017年起,路透社整理了一些公司公布的数据,从中可以看出,像谷歌、苹果、微软、Facebook这些公司,整体上男性占了2/3,而单独挑出技术岗位,男性比例则达到了将近4/5。 AI学会了人类的歧视 不过,数据量大小并不意味着少数数据就会被歧视,相信亚马逊的AI也不会傻到只选取简历数据中大多数人的共同特点,那样岂不是错过了少数天才? 在Hacker News和Reddit的评论区,一些更懂技术的网友把矛头对准了数据体现的亚马逊在招聘中现存的性别歧视问题。 从技术上讲,可以说这个人工智能是成功的,因为它模仿了亚马逊当前的招聘状态。 并给出了背后的逻辑。 机器学习过程不会引入任何偏差,但训练数据中存在的任何偏差都将在算法中忠实地展现出来。 也就是说,AI自己本身是一个天真无邪的“幼儿”,它不会自主的学会偏见和歧视,但如果给“幼儿”上课的“老师”亚马逊的招聘数据自身带了偏见,那么这些偏见就会“言传身教”给无辜的AI。 或者说,AI是从人类社会中,学会了人类的偏见和歧视。 我们不想让AI歧视女性,但这绝非易事,因为AI无法忽视它所学习的人类社会对女性的歧视。这绝对是一个难题,不仅仅是技术上的难题,更是哲学层面上的难题。 AI在无意中学会人类之恶,这并不是第一次发生。 此前的微软的聊天机器人Tay,就曾经学会了人类的那些极端言论,在Twitter上咒骂女权主义者和犹太人。 而招聘AI这一次,人类的错误让AI重蹈覆辙了。 “很显然,我们没有吸取微软Tay的任何教训。”有网友评论道。 这个AI靠抓关键词? 不只是训练数据的问题。路透社的报道中还披露了亚马逊训练AI的细节。 · 开发了500个针对特定工作职能及岗位的模型。 · 训练每个模型去识别过去求职者简历中出现的近5万个关键词。 · 模型算法按照重要程度给求职者的技能进行优先级排序。 所以这个AI,很大一部分工作是在抓关键词嘛。比如它偏好的“执行”、“抓取”这种词,在男性求职者的简历中出现次数更多,也从另一个维度造成了女性候选人的劣势。 因此,这也是导致性别歧视的一个原因。甚至,还可能会给人“钻空子”的机会。 Reddit上的一名网友评论称: “亚马逊阅读简历的AI从一开始就注定了要失败,因为任何人都可以去学习怎样写好一份简历。让我写一份医生的简历,我打赌我会比真医生写的要好。” 想一想那些“简历写作技巧”的培训,是不是都告诉你HR看一份简历只要二三十秒,简历里有某些关键词、重要数据就能吸引HR的注意? 因此,这种抓关键词的机制,就得以让很多人通过强行往简历里塞关键词,而获得更高的星级,造成了另一种不公平。 AI招聘,道阻且长 根据招聘公司CareerBuilder 2017年在美国进行的一项调查,55%的人力资源经理表示,将会在未来五年中采用AI,并将其作为日常工作中的工具。 一些“激进”或者说有大量招聘需求的公司,已经将AI应用到招聘环节中去了。比如希尔顿酒店,就在招聘的时候,会先利用聊天机器人面试,并为求职者匹配合适的岗位,之后再进入下一轮面试。 在接受采访时,希尔顿招聘副主管Sarah Smart表示,“人工智能会分析求职者的语调、眼神和回答的表情,来判断求职者是否对工作富有热情,从而来帮助我们筛选求职者。” 具体体验怎么样呢?体验过聊天机器人面试官的Japser Rey说,“和聊天机器人对话时,我不用担心自己会分神,而且机器人不会戴有色眼镜看人,相对更公平公正一些。” 相对来说,大部分公司并没有将AI放到具体的招聘决策环节之中,只是作为一个辅助工具。 百度:将AI应用到了招聘上,在今年的校园招聘中,采用AI分析简历、推荐岗位。 高盛:开发了简历分析工具,会将求职者与“最适合”的部门进行匹配。 LinkedIn:根据网站上发布的岗位消息,利用算法为雇主提供求职者的排名。 尽管人们对AI招聘并不十分待见,但却无法阻挡这样一个趋势:AI终将左右你找工作这件事。 它只会迟到,但不会缺席。   原文链接:亚马逊AI惹众怒:一个没有意识的程序,竟然自己学会了“重男轻女” 亚马逊用AI筛简历发现“性别歧视”? 最终关闭
    AI
    2018年10月11日
  • AI
    芯片制造商美光将向人工智能公司投资1亿美元 文/Stephen Nellis   据路透社报道,美光科技周三表示,计划向致力于开发人工智能技术的初创公司投资1亿美元,这些技术将用于自动驾驶汽车、工厂自动化和其他新兴领域。 (图:The main entrance to Micron corporate headquarters in Boise, Idaho, February 3, 2012. REUTERS/Brian Losness) 美光首席商务官Sumit Sadana向路透表示,10多年前,这家总部位于爱达荷州的内存芯片制造商启动了一项企业风险投资计划,但迄今为止,该公司的投资一直“非常分散”,而且“非常接近我们芯片制造的核心业务”。 现有风险操作的返回已经稳固,该公司认为,它可以最终出售更多的内存芯片通过扩大其参与人工智能,因为现场处理大量的数据需要存储在它的产品上,他说在美光的第一个人工智能在旧金山会议上宣布。美光此前的投资很少公开披露。 Sadana表示,这些新预留的资金将用于开发人工智能的硬件和软件初创企业。他说,美光对投资无人驾驶汽车技术、增强现实和虚拟现实以及自动化工厂的技术特别感兴趣,因为美光在这些领域已经有了业务。 "我们将大幅加快投资步伐," Sadana称。 像教计算机识别图像或人类语言这样的人工智能任务需要大量的数据和计算能力。 因此,美光芯片行业的同代人也在这方面进行投资。英特尔(intc . o:行情)旗下的风险投资部门近年来已向致力于人工智能领域的初创企业投资逾10亿美元,英伟达(Nvidia . n:行情)也推出一项计划,帮助数千家小型企业使用其芯片。 美光表示,其为初创企业提供的风险资本中,有五分之一将用于由女性和其他代表性不足的集团牵头的机构。美光还在旧金山的会议上表示,其非盈利机构美光基金会(Micron Foundation)将提供100万美元的资金,用于资助大学和从事人工智能研究的非营利组织。 前三名获奖者是伯克利人工智能研究实验室(Berkeley Artificial Intelligence Research Lab)、斯坦福精密健康与综合诊断中心(Stanford Precision Health and Integrated Diagnostics Center)和AI4All——一个非盈利组织,为少量AI领域内学生提供夏令营。   以上为AI翻译,观点仅供参考。 原文链接:Chipmaker Micron to invest $100 million in artificial intelligence companies
    AI
    2018年10月11日