你知道吗?机器学习与 人工智能:它们有何不同?

2018年07月16日 50358次浏览


特伦斯米尔斯  AI.io和Moonshot的首席执行官Terence Mills是AI的先驱和数字技术专家。在LinkedIn上与他联系关于人工智能或移动设备


人工智能和机器已经成为日常生活的一部分,但这并不意味着我们很好地理解它们。你知道机器学习(ML)和人工智能(AI)之间的区别吗?


如果您希望在您的业务中使用其中一种,那么了解哪一项重点关注非常重要。ML和AI是相关的,但它们不相同,并且它们不一定适合于相同的任务。您可以通过了解何时选择ML或AI来将您的业务提升到新的水平。

本指南将向您介绍您需要了解的有关AI和ML的所有信息,以及它们为何与众不同。继续阅读,了解这种现代科技如何帮助您和您的企业。

机器学习与 人工智能:基础知识

以下是这些不同概念的两个简单,基本的定义。

AI意味着机器可以以“智能”的方式执行任务这些机器不仅仅被编程为执行单个重复动作 - 它们可以通过适应不同情况做更多事情。

机器学习在技术上是人工智能的一个分支,但它比整体概念更具体。机器学习的基础是我们可以构建机器来处理数据并自己学习,而不需要我们不断的监督。

让我们仔细看看这两个概念的真正含义以及它们是如何发展的。

在一开始的时候

毋庸置疑,AI和机器学习相对较新。几十年,几百年甚至几千年前,这些概念可以追溯到某些富有想象力的个体。但直到最近,这些梦想才成为现实。

人工智能的概念在最早的计算机上得到了巩固。当然,这些第一台计算机并没有自己做出任何决定。然而,它们是能够记住信息并进行计算的“逻辑机器”。创建这些机器的人知道他们正在努力制造一台类似大脑的机器。

然而,从那时起技术变得更加先进,因此我们制造类似大脑的机器的能力也有所提高。在过去的几十年里,我们也更好地理解了自己的大脑是如何运作的。

我们越了解这些事情,人工智能的变化就越多。我们的计算机现在可以进行极其复杂的计算,但是现在的开发并没有真正关注那些。相反,人们正在寻求创造能够以类似于人类的方式做出决策并使用这些决策来完成任务的机器。

AI的类型

人工智能有两个主要的子类别。第一个应用AI。这是最常见的AI形式。它包括从智能股票交易系统到自动驾驶的所有内容。

广义AI不太常见,因为它更难创建。理想情况下,广义AI能够处理各种不同的任务,就像人类一样。尽管这些AI并不常见,但许多研究人员已经在广义AI领域取得了进步。

最重要的是,这一小节是导致机器学习发展的原因。

机器学习的成长

由于AI领域的某些突破,机器学习得以发展。

第一个突破涉及认识到教授计算机如何学习比教他们如何执行每项可能的任务并为他们提供完成这些任务所需的信息更有效。

第二个重大突破是互联网的发明。这导致了以前从未见过的巨大的信息存储潜力。现在,机器可以查看由于存储限制而无法访问的大量数据。实际上,创建的数据量太多,人类无法处理。

这两个突破清楚地表明,不是教机器做事,更好的目标是设计它们为自己“思考”,然后允许他们访问在线可用的大量数据,以便他们可以学习。

神经网络的作用

神经网络的出现对于教导计算机像人类一样思考的过程变得至关重要。神经网络允许计算机更紧密地模仿人类的大脑,同时仍然更快,更准确,更少偏见。

神经网络是一种计算机系统,它可以像我们自己的大脑一样对信息进行分类。例如,神经网络可以查看图片,识别图片中的元素,并根据它们显示的内容对图片进行分类。

这些网络使用他们有权访问的数据进行确定。数据不允许它们完全准确,但他们可以根据最有可能做出的决定做出决定。

最重要的是,这些系统涉及“学习”的反馈循环。机器可以查明其决策是否正确,然后改变其方法,以便下次做得更好。

机器学习能做什么?

这些系统的可能性似乎无穷无尽。

ML已经允许计算机查看文本并确定内容是正面还是负面。他们可以弄清楚一首歌是否更有可能让人伤心而不是快乐。其中一些机器甚至可以制作自己的作品,主题基于他们听过的作品。

机器学习的一个主要应用是与人沟通。人工智能领域称为自然语言处理,大量使用机器学习。有一天,这将使公司能够提供与人类客户支持一样有用的自动化客户服务。

机器学习与 人工智能:哪个适合你?

AI和ML都可以拥有有价值的业务应用程序。确定哪一个最适合您的公司取决于您的需求。

这些系统有很多很好的应用可供选择,但ML最近得到了更多的宣传,因此许多公司都专注于这种解决方案的来源。但是,AI对于许多不需要持续学习的简单应用程序也很有用。

以上由AI翻译完成!

原论文连接:https://www.forbes.com/sites/forbestechcouncil/2018/07/11/machine-learning-vs-artificial-intelligence-how-are-they-different/#177f00033521

关于我们  | 商务合作  | 加入我们  | 那年今日  | 招聘科技峰会精彩回顾  | 上海科技峰会回顾  | 首届HR区块链峰会  | 2017HRTech年度颁奖  | people analytics  | 候选人体验大奖  | 友情链接  | HR科技极客大奖  | 深圳科技峰会精彩回顾  | HR共享服务平台  | 三支柱论坛2018  | 2018数字人力资源科技奖榜单  | 2018 数字人力资源科技奖  | 北京2018HRTechCon精彩回顾  | 2018HRTechXPO  | 2018TOP100人物榜单  | 2019年度活动计划  | 2018年度大奖揭晓  | 2018投融资报告  | 2017投融资报告  | INSPIRE 2019精彩回顾  | 2019海外活动计划  | 2019北京招聘科技论坛精彩回顾  | 2019深圳人力资本分析峰会精彩回顾  | 2019中国人力资源科技峰会上海精彩回顾  | 2019HR科技极客大奖  | 北京HRTechXPO未来馆精彩回顾  | 深圳·2019招聘科技创新论坛精彩回顾  | 2019候选人体验大奖榜单  | 中国人力资源科技云图  | 招聘科技云图  | 2019上海招聘科技创新论坛精彩回顾  | 深圳7月19日HRTechXPO精彩回顾  | 2019HRPA上海站精彩回顾  | 2019中国人力资源科技创新奖  | 深圳·2019中国人力资源科技年度峰会精彩回顾  | 2019北京HR科技峰会精彩回顾  | 2019数字人力资源科技奖榜单  | 2019HRTechChina TOP人物榜单  | 2019HRTechTOP人物列表  | 2019HRTechXPO-上海精彩回顾  | 2020HRTechChina品牌活动计划  | 2020HRTech云图入口  | 共同战疫专题  | 2019年度评选榜单  | 2020招聘科技创新虚拟峰会精彩回顾  | 助力企业共同抗疫专题  | 2020年度候选人体验大奖(中国地区)榜单揭晓  | 2020HRTech虚拟峰会精彩回顾  | 提交业务需求  | HR专业直播  | 2020HR科技年度峰会·上海精彩回顾  | 2020HR科技年度峰会·深圳  | 2020中国人力资源科技创新奖榜单  | 2020员工体验中国峰会上海精彩回顾  | 2020数字人力资源科技奖(DigitalHRTech® Awards 2020)获奖榜单重磅揭晓  | 2020中国人力资源科技影响力TOP人物揭晓  | 2020中国人力资源科技影响力TOP人物榜单  | 北京·2020中国人力资源科技年度峰会  | 上海站精彩回顾-2020HRTechXPO未来人力资源科技论坛  | 影响力品牌50强  | 2020HRTechXPO未来人力资源科技论坛·北京站精彩回顾  | HR科技云图认证服务  | EXInstitute.cn  | 2021年度HRTech活动计划安排与评选奖项计划  | 2020年度大奖榜单  | 员工体验研究院  | 2021HRTech创新品牌30强榜单  | 员工体验指数测评  | 2021升级版员工体验旅程图下载  | 2021员工体验大奖榜单  | 2021员工体验中国指数:73.4  | 2021候选人体验大奖榜单  | 2021HR科技创新奖榜单  | 2021人力资本分析大奖揭晓