-
GrowingIO
GrowingIO B 轮融资3000万美元 打造更懂用户和增长的行为分析产品
在数据分析行业布局三年后,GrowingIO 正在用产品和服务影响更多的用户,通过打造业内领先的基于用户行为的分析产品和增长整体解决方案,帮助产品经理、运营、增长负责人等落地增长,逐步成为行业的领导者。
2018年10月25日, GrowingIO 宣布获得NEA、经纬中国和Greylock三家投资机构 B 轮融资 3000万美元,成为行业内同等轮次融资金额最高的公司。
并发布了基于用户全生命周期分析和运营的整体产品新战略, 推出了小程序分析、可视化定义指标、用户画像、全平台用户行为数据采集、全获客渠道分析等10多个产品功能重大更新。
GrowingIO CEO 张溪梦(Simon Zhang)表示,未来 GrowingIO 将在产品和技术研发、增长服务落地、市场和业务创新上投入更多的资源。“为产品、运营、增长人员,提供更加快速、高效的用户行为分析产品和服务,帮助他们提高转化和留存,打造增长引擎。”
产品更贴近业务
从2015年5月创立 ,将“增长黑客”概念引入中国,以用户行为分析产品开始帮助客户落地增长实践,GrowingIO 一直走在分析产品的前沿。
10月25日,GrowingIO发布了基于用户全生命周期分析和运营的整体产品新战略, 推出了小程序分析、可视化定义指标、用户画像、全平台用户行为数据采集、全获客渠道分析活动运营分析、小程序看数助手等10多个产品功能重大更新。
“从获客监测、到用户激活、再到留存和变现整个用户生命周期, GrowingIO 按照数据采集、图表监测、分析洞察、实验改进的增长闭环,提供更加丰富完善的产品功能和模块,帮助产品和运营人员快速发现问题、提出假设、实验优化,用数据来驱动增长。”GrowingIO CTO 叶玎玎表示。
其中,除了持续改进 Web/Android/iOS 的采集能力,也新增了对于微信生态圈、支付宝小程序的采集能力等。GrowingIO 同时将支持服务端数据采集和提供更丰富的数据对接方式, 不止是交互行为数据,也包括业务行为数据,GrowingIO 支持全平台数据采集。
并新增媒体监测、深度链接、二维码管理和投放映射等,覆盖全渠道数据监测,打通渠道、下载、激活、注册到产品内转化留存的用户数据,支持深度流量分析,精准评估渠道质量。
GrowingIO 增强了数据洞察能力,强化用户画像等功能支持, ”不同客户的留存行为区别、如何快速找到强留存功能,以推送给其他类似的用户分群,提升产品整体留存等这些场景应用,用户此前通常需要分享1-2周甚至更长时间的分析才能获取结果,在我们的新功能上,只需几步操作就能获取到。“叶玎玎介绍。
并依托于 GrowingIO 既有双模数据采集方案和强大的数据分析能力,GrowingIO 重磅推出的小程序分析产品,支持投放-行为-业务数据打通,助力做获客-转化-分享增长分析闭环,不仅满足基础的数据监测和分析,更能支持更深度的转化、留存分析。
比其传统的数据分析工具, GrowingIO 提供一套更为灵活和强大的分析产品。“更快、更容易上手、更专业、更灵活、更懂增长”成为大多数客户选择 GrowingIO 的核心原因。
这主要依赖 GrowingIO的双模(无埋点加埋点采集)分析模式,满足敏捷探索以洞察未知增长点,及稳健监控以监控核心增长点的双重需求。其中无埋点全量实时采集用户行为数据,解放研发人力,减少内部沟通成本,敏捷快速支持创新迭代;埋点打通用户交互行为和业务数据,全面监控核心业务运营指标。
创立之初,GrowingIO 以无埋点技术切入市场,解决用户此前在用户行为数据采集上的工作量大,部署周期长,并且用户个性化需求无法被满足,分析灵活度不足,业务同学做数据分析强依赖产研和分析资源等痛点。 减少业务人员对产研和分析资源的依赖,自行圈选,即可按照业务需求制作指标和图表,随时分析随时优化运营策略。
“GrowingIO对小猪最大的帮助是,它成为一个人人会用的工具,不只是产品经理,用户运营与市场运营都能自助定制一个接地气的观察方法,在上线的第一时间,开启观察与优化的动作。”小猪短租产品副总裁孙朝晖认为,“Growingio 不是在赋权,而是在赋能。”小猪短租早在2016年9就开始跟 GrowingIO 合作至今。
作为 GrowingIO 的技术优势,并随着客户在无埋点技术的使用越来越深入,GrowingIO 不断进行技术迭代和升级,升级数据统计模型及数据模型重构,提高数据采集的稳定和准确性。并新增支持小程序、小游戏、React Native 等,发布 Chrome Web 圈选、实时调试等插件,将机器学习应用在无埋点数据匹配上,迭代圈选元素智能推荐技术,帮助用户更快、更准确的采集所需数据。
不止于产品,更是一整套增长解决方案
不只是帮用户搭建一套数据平台或只是提供一套软件, GrowingIO 在业内首推国内领先的“分析产品+运营实施+增长咨询”数据服务体系,提供一整套增长解决方案,帮企业落地用数据驱动业务增长。
在服务客户的过程中,发现很多客户有很强数据驱动的需求,但过往积累的经验更多是流量运营,比较缺乏增长经验的积累。比如在基础的数据体系搭建上,仍旧处于比较初级和粗糙的状态,即便是一些体量大、较为成熟的企业,其内部也没有建立完善科学的指标体系。
GrowingIO 在业内搭建了首个增长分析师团队,其分析师和技术实施团队在服务了上千家企业后,积累了丰富深厚的行业经验,提供业内领先的电商、互金、在线社交、在线教育、新零售等几大行业场景数据化解决方案。
在客户接入后,GrowingIO 服务团队会安排专业的增长分析师团队帮助客户提供数据规划,技术实施团队快速接入,帮助企业全面梳理并搭建更科学的核心指标体系及增长解决方案,然后由客户成功团队,后续提供全生命周期服务,协助客户落地增长。
并早在2016年,GrowingIO 就推出国内首家以“数据驱动增长”为核心的 GrowingIO 增长学院,和硅谷顶尖增长专家与机构展开合作,将全球更先进、更科学的增长理念和实践系统性落地本土,帮助国内企业管理者搭建增长团队、构建组织增长体系、驱动文化及创新。
随着对客户普及增长方法论的认知、提供最佳实践指导、产品使用培训等全方位服务的深入,在 GrowingIO 服务的客户中,越来越多的公司,包括像快手、滴滴出行等这些一流互联网公司都在搭建增长团队、增设增长职位或增长官。
并像春秋航空、实习僧、热拉、中原地产等一大批增长前沿的实践者,借助 GrowingIO的产品分析、洞察和优化,实现用户整体次日留存率提升3% 、注册转化率提升10%、获客成本仅为行业的20%等实际的增长落地。
目前,GrowingIO 成长迅速,服务了800多家付费用户,客单价同比提升了100%,最新一季度续约金额超期120%完成,其中一些代表性客户合作金额实现从几万到几十万,甚至几百万的提升。
客户既包括头部互联网公司及大量创新成长型公司,如腾讯社交广告、滴滴、快手、陌陌、58同城、人人贷、宜人贷、点融、花椒、造作、自如、小猪短租、途家等;也包括中国移动、云南移动、中移在线、海尔、方太、上海链家、春秋航空、华住酒店集团、首旅如家、顶新、新东方等大型企事业客户的线上业务;其中销售易、北森、下厨房、猎上、狗民、小猪短租等,都是 GrowingIO 自创办至今连续三年续约的忠实客户。
其实早在今年2月,GrowingIO B 轮融资已经完成。做为 GrowingIO 最早的投资机构,经纬创投董事总经理熊飞认为自己正见证一个伟大公司的创立,他表示,“我们认为中国企业对增长以及如何精细化运营流量的需求非常巨大,Simon正逢其时地把硅谷先进的实践经验带回中国落地,我们看到越来越多的用户通过 GrowingIO 有效提升 ROI,加速他们的增长。而 GrowingIO 自身在客户数和收入额过往三年也在快速增长。”
美国最大投资基金之一 NEA 亚洲区主席 Carmen Chang 表示,“我们投资一家公司,几乎都是因为团队创始人、团队和他们的愿景。我们听说了很多 Simon 的事,他在圈内、特别是 LinkedIn 都很受尊敬,他在 LinkedIn 带领整个数据科学团队,现在他在国内也组建了一支优秀的创始团队。 促使我们投资他的一个重要原因是,他对公司的使命有着非常宽广的视野,对公司的业务有着巨大的热情。”
NEA全球管理合伙人 Scott Sandell 同时表示,“GrowingIO 让客户能够更快更高效的获取、分析他们的用户行为数据,并制定策略采取行动。这在中国至世界各地都有非常巨大的需求,我始终认为,它最终将是一家全球性的公司,所以我们决定继续领投 GrowingIO。“
目前产品、运营、增长等人群仍是个年轻、创新的群体,还处在早期成长阶段,远未到爆发阶段。“从现状来看,可能是个10-20亿元的市场。但这是潜力巨大的市场,未来可能有10倍,甚至更高的增长。”他认为。
虽然行业仍处在早期成长期,但如何使用数据驱动增长,正在被越来越多的企业快速吸收理解,并创新应用,“用户的学习和成长速度,用户使用时长、使用度和活跃度比我们想象得更长、更深、更高。”张溪梦认为。
GrowingIO 数据后台显示,目前,其采集日均用户行为消息数达到2000亿条,同比增加了100%;监控指标总数达百万规模,增长了 60%。
不过,张溪梦仍认为这是个慢生意,需要有足够的耐心。“一方面技术、产品的门槛,没有人能够跳跃式地跨过,数据分析是数据平台、技术架构等各种能力的综合;另一方面,能否在未来的每个月、每个季度都持续把握住客户需求,并将客户实践积累出的经验转化成产品和服务。GrowingIO 还需要不断努力,以实现给客户带来价值,用数据驱动增长。”
原文链接: GrowingIO B 轮融资3000万美元 打造更懂用户和增长的行为分析产品
-
GrowingIO
GrowingIO获得2000万美元A轮融资,在无埋点的基础上强化实用场景
今日,GrowingIO在北京召开发布会宣布,已经获得 2000 万美元 A 轮融资,投资方是经纬中国、NEA、Greylock。此前在 2015年8月,其获得过经纬中国、Greylock、NEA 的 220 万美元天使轮融资。
GrowingIO 成立于 2015年5月,创始人张溪梦是原 Linkedin 商业分析部高级总监,曾被美国 Data Science Central 评选为 “世界前十位前沿数据科学家” 。他创办 GrowingIO 的目标是为互联网企业提供方便高效的数据分析服务,从而令企业做到数据驱动,提高商业运营效率。
GrowingIO 从数据采集技术切入,最大的亮点是不需要开发人员埋点,就可以详细地收集用户的数据。得到数据之后,GrowingIO 的分析师会根据数据,帮助客户梳理业务上的问题,提出可能适用的数据分析模型。当客户的运营、销售或者数据科学家熟悉 GrowingIO 系统之后,便可以根据 GrowingIO 采集的原子级别的数据,挖掘出更多的数据分析应用场景,比如提升用户转化率、减低客户流失率和深刻理解客户分群等。
此外,GrowingIO 还发布了 V2.0 版本,在无埋点技术和全量实时的数据分析功能的基础上,GrowingIO 全新上线了更精细的漏斗对比、用户细查、热力图等实用功能。
此前国内虽然有 GA、百度统计、友盟等数据分析工具,但是这些工具更偏重于页面访问量、活跃用户量、新增注册用户、交易数量以及支付成功率等基础指标,但无法支持更精细的数据分析,想要了解每一个用户在哪一个环节流失、用户的转化效果、用户属性等都需要埋点才能实现,而埋点不仅操作麻烦,还有漏埋和错埋的风险。
张溪梦强调,GrowingIO 新版产品能够呈现用户行为的每一次点击、每一次跳转、每一次登录等全量、实时用户行为数据,并在此基础上,可通过用户分群、漏斗对比等功能,分析不同访问来源、不同城市、不同广告来源等多维度的不同转化细节。
产品经理、市场运营人员不再只看到表面整体转化率,还能看到了解转化过程中每一处细节,帮助其在第一时间找到转化突破点和优化点,以此改进产品体验、调整运营策略。
据悉,GrowingIO 已有 1000 多家客户,其中包括点融、人人贷、普惠金融、唯品会-乐峰、北森、销售易、环信、明道、猎上、名片全能王、回家吃饭、下厨房、Camera360 等近百家付费客户,涵盖互联网金融、O2O、电商、SaaS 等网站和 APP 客户。
发布会上,经纬中国创始管理合伙人邵亦波也到场,他表示,“用户行为数据驱动运营,将成为互联网领域的水电煤,价值巨大。在硅谷,这已是 LinkedIn、Facebook 等业内巨头的标配。同时美国同类型创业公司 Mixpanel、Optimizely 等企业也很快成为 10 亿美元量级公司。而在国内,随着互联网红利逐步衰减,精细化运营也成为互联网行业关注的重点。 ”
原创文章,作者:徐宁,如若转载,请注明出处:http://36kr.com/p/5048713.html
-
GrowingIO
LinkedIn前高管张溪梦创业 推商业数据分析平台GrowingIO
HRTechchina北京报道,12月8日下午,Simon Zhang 创办的商业数据分析公司GrowingIO发布首款实时商业数据分析产品GrowingIO V1.0,该产品同时适用于Web页面、HTML5页面以及iOS/Android客户端的数据分析。
Simon 是硅谷华人大神人物,单枪匹马创建Linkedin公司的数据分析部门,从几个人到现在80多人的团队。而GrowingIO其他主创团队成员也多来自LinkedIn、eBay 、Coursera、亚信等国内外互联网及数据公司,2015年5月回国创业。目前,GrowingIO已获得经纬中国创始人邵亦波、LinkedIn创始人Reid Hoffman、美国风险投资基金NEA的220万美元天使轮投资。
本次发布的产品GrowingIO V1.0实现了无埋点数据采集、全面收集实时数据、一键出图、实时数据分析等功能。GrowingIO V1.0上手简单,只需加载一次JavaScript代码或SDK即可使用,极大缩减了安装和调试的时间。用户加载完成几分钟后,就可以实时采集到页面任一元素的用户交互数据,而不用提前定义需要采集的事件和功能,就能实时地看到所有的历史数据趋势。
张溪梦表示,其开发的是普适化产品,而非定制化服务,所以这个方案不需要定制,而是全自动化完成。
对于收费模式,GrowingIO将以客户的客户数量为标准进行收费,GrowingIO除了提供相应代码,并提供分析师为客户提供数据体系建立的培训。以此计算,平均每个月每个客户所花费用约为500至600元人民币,这一价格是企业建立基础数据分析团队成本的5-10%。
继LinkedIn、Facebook、Twitter等硅谷互联网公司依靠数据分析实现闪电式扩张后,国内互联网行业也开始反思,通过烧流量、大规模地推、补贴等粗放手段,赢得用户增长或者收入增长的模式是否可以持续。
目前可以看到的是,许多互联网公司纷纷开始了数据驱动业务增长的尝试,希望借助技术手段和数据分析,以最低成本甚至零预算,获取客户和收入的指数级增长,成为和上述明星公司一样的“增长黑客”。
张溪梦认为,移动互联网的增长红利窗口正在逐渐消失。对于在过去5-10年里崛起的互联网企业而言,粗放商业模式带来的利润和利润率已越来越低。
”我们希望能帮助这些企业,用商业数据分析这种直接有效的方式实现运营效率、用户数和收入的指数级提升,而不仅仅是依靠直觉和过往经验”, 这也是张溪梦和几位联合创始人回国创业的初衷。
GrowingIO虽仅成立6个多月,但早在内测期间就已经获得如北森、销售易、猎聘、Ucloud、明道、今目标、环信、亿方云、美洽、易快报等大中型SaaS公司在内的首批近百家合作企业。
-
GrowingIO
特邀专栏:张溪梦谈数据分析如何破解SaaS企业客户留存难题?
每个人都感受到了今年是中国企业级服务SaaS元年。无论是融资额、用户增长、销售市场,SaaS服务从来没有象今天一样火热。
但是众多SaaS服务厂商都在面临同一道难题,如何保持客户终身价值与客户获取成本的最佳平衡。
2015年11月2日,易观智库发布的《中国企业级SaaS市场年度综合报告2015》中,亦表示这是企业级SaaS市场发展有三大难点之一。
怎么破解?
在SaaS企业客户中,客户留存度几乎成为每个SaaS公司的核心分析指标。
许多的企业服务公司都在快速地引入和扩展自己的客户成功、延展销售团队或者客户关系管理团队,积极服务于现有的企业级客户,从而减低客户流失率,增加客户黏度。
一、衡量客户成功的核心目标是客户留存度
客户成功经理以及客服人员最主要的任务之一,就是用数据分析,追踪客户是如何使用产品,从而提高客户留存率。
世界上知名的SaaS企业,比如Salesforce, LinkedIn, Box以及Workday等都紧密地追踪新开账户、以及持续衡量现有客户对产品的使用。
这种近乎痴迷地、持续追踪用户各种使用行为、监测对现有及各种新产品功能的使用频率和各种模块细节使用情况,核心目的主要有三个:
1. 衡量客户忠诚度,减低潜在流失率。
2. 预测客户复购率、增加潜在增购可能性。
3. 增强产品设计体验和使用流畅度,提高客户体验,减低产品摩擦。
注意是减低潜在流失率、潜增加在增购可能性,而不是流失率、增购可能性,为什么要强调潜在?
因为有数据分析。数据分析可以使得客户成功经理或销售经理,在客户流失苗头出现之前,就能及时采取行动,阻止客户流失,把潜在的可能性消灭在摇篮里。
为什么数据分析能做到?
因为数据分析能够提供给所有的客户成功经理或销售经理非常详尽的客户分析记录,以详细理解客户的使用行为,从而预测并降低客户流失的风险。
如,当一个客户对新产品功能使用率非常低,客户成功经理、销售经理需要迅速地联系客户,了解用户为什么很少使用或者停止使用。
如果分析结果显示,客户已经停止使用产品的核心功能,这种数据分析结果往往是客户无法从产品中直接获得价值,长远讲,客户会停止使用这个产品,最终造成了营收减低。
二、SaaS客户成功分析的核心指标
客户健康度:根据每一个客户的使用情况给出预警
什么是客户健康度?
可以理解为用户使用SaaS软件各种产品特性的行为数据的一种集合,这个指标涉及到客户使用产品频次、广度和深度,是客户是否会留存的核心指针。
即客户是否会留存就看客户健康度高不高。
在销售的时候就应该考虑到续约问题。
前瞻性的续约需要在续约谈判前获得客户使用数据和健康状况的报告。
当客户还在使用周期内,就应该分析其使用状况及流失风险,从而可以在早期就能发现风险,并采取行动挽留他们。
但现在很多SaaS企业的客户关系管理指标,还很原始粗暴,仍按下一次用户续费日期-----合同到期日期进行。
也就是当距离客户续约之前的若干周/若干月,客户成功经理、销售经理等才会去联系客户询问和接洽续约。
这种做法在SaaS领域越来越遭到摒弃。
因为这种“交易”型客户关系管理,已经越来越不适应当代客户关系管理系统。在续约之前才发现客户已经很少或不使用产品,他们续约可能性基本已经减低为零。
所以越快发现客户存在风险,你就越很快做出反应,来提升客户健康状况。
数据分析可以提供这种结果,
哪些客户存在流失风险,以及哪些客户有拓展机会。
精确评分系统的核心是以用户的行为和使用数据展开,进而结合商业直觉对用户的潜在续约率进行判断。
如何使用健康度这个指标?
1. 积极应对高危账户
好的客户关系管理要利用数据分析,找到用户使用中问题的根源,优化问题解决方案。
有效的客户成功分析系统能够让你把资源分配到最需要的地方,提供及时的服务,发现服务模式和趋势。
有效的商业服务不是去扮演救火员,而是提供有战略意义的反馈。
这里核心的衡量标准就是要紧密追踪客户对产品各种功能的使用度,从而了解客户的痛点和使用特点,有针对性的制定培训和客户关怀策略。
2. 持续指导每个用户,并且进行培训:
入门培训并不是一个一次性的项目,而是长期持续的过程。
有效的培训需要一个系统性的方法,在产品使用周期内,持续指导关键客户。
培训时需要考虑到不同技能等级客户,最佳策略是,在培训过程中,找到并消除不同客户间的差距,最终提高所有客户的能力。
然而并不是所有的客户都需要培训,企业需要用数据分析的手段来了解每一个客户的使用情况,从而判断哪个客户需要培训,哪个客户不需要培训。这样才能最优化的调整客户指导的策略,有效的利用内部销售和客户成功各部门的时间和资源。
但是通常,每个销售经理和客户成功经理手中通常掌握了几百、甚至几千名客户,怎么可能了解每个客户使用情况。
最近国内兴起了一种从硅谷传过来的,针对客户成功的精益化运营分析工具,如GrowingIO等,可以提供接近事实追踪网站或APP内的产品使用行为,从而直接预测每个客户健康度,以监控潜在流失可能性。
客户温度:衡量客户的使用温度,扩大收入
什么是“客户温度”?
可以理解为用户使用SaaS产品各种产品特性的行为数据,那些能够预测其进行复购,增购、或者追加销售的指针。
这个指标涉及到客户使用产品中货币化组件的可能性。也就是Monetization(货币化),是客户是否会增加购买的核心指针。
找到扩大收入机会的核心是:在不增加客户获取成本的情况下如何增加营业额
要想使得占领——扩张策略生效,需要有一个有预测力前瞻性的方法从当前用户基础上扩大收入。
投资回报率数据可以作为扩大服务范围的基础。但要想持续得找到收入增长的机遇同时满足客户需求,大规模重复的人力工作貌似是必不可少的。
比如说给每一个客户打电话询问他们是否需要新的产品和增值服务。
但是这种地推和穷举的方法需要大量的人力,物力和时间去管理,这是一个成本很高,转化率很低的方式。最终导致的是获取和维护客户关系的成本大大提高,但是销售额却没有太多的提振。
而且现实是,销售人员和客户成功经理们都直接管理几十个甚至几百个客户,没有人能够在同一时间之内关注如此多的用户。
这就要求我们能够随时随刻地判断每一个现有客户的增购,和重复购买的可能性。最简单的方法就是利用所有用户的使用行为,找到当天,当周,当月优先级最高的客户予以关注。
上文提到的新一代数据分析工具,就可以通过对用户在SaaS云服务网页或者App端各种产品细节的使用和互动,特别是针对客户消耗和付费功能等的各种使用信号的分析,来对所有使用中的客户进行排序和调优。找到超级活跃客户,也就是“高温度”客户。从而为客户成功经理以及销售人员提供最新的客户动态,让企业内的客户支持部门,有针对性地对活跃度和重复购买率高的用户及时跟进。
发现和发展值得信任的推广大使
满意的客户常常会变成热情的产品推广者。他们的使用经历、成功故事和推荐非常有说服力和吸引力。
因此为了增加他们的人数和有效得利用他们的声音,需要发展一套方法来识别、发展和管理这些客户或者推广大使。
因此客户成功的数据化管理就越发的重要,通过通过客户成功分析及时找到这些忠实的粉丝,就等于找到下一次营销的机会。
关于GrowingIO
GrowingIO致力于卓越易用的数据分析工具,如果你是以下三种人,请立即关注我们,申请试用:
一、你是数据工程师,却在“不务正业”地搭建BI、配置GA代码。→点击阅读原文申请试用,立刻减少无效加班;
二、你是产品经理,却不知道如何分解KPI。→点击阅读原文申请试用,三步就能洞悉留存曲线、精确识别用户行为;
三、你是业务负责人,苦于收入增长乏力。→点击阅读原文申请试用,让我们告诉你怎样就能让客户高效下单;
加入GrowingIO我们相信有才能的人是一切的根本,我们对人才极度渴望,我们欢迎前端开发工程师、后端开发工程师、大数据工程师、机器学习工程师、数据分析师等各类有才华的人员加入我们。
请登录 https://growingio.com/joinus
或发送简历至 talent@growingio.com。
本文系GrowingIO 张溪梦 原创,转载请注明来自微信号GrowingIO.
张溪梦曾经一手创办了Linkedin 的数据分析部门,相当牛!
-
GrowingIO
GrowingIO:将数据分析流程整合成一个产品,协助用户优化企业运营效率
提到 Growth Hacking,对互联网行业稍有了解的人或许都知道这是当下一个挺受欢迎的概念。一些知名的公司,比如 Airbnb 就曾经用这种理念获得了井喷式的增长。如果你之前还没听说过 Airbnb 与 Growth Hacking 之间的故事的话,我建议你先读一下《Airbnb 的“暗黑成长史”》,因为看过之后,你自然会对我今天要介绍的这个工具更感兴趣。
对于已经看过上面那篇文章的读者来说,你或许也想能找到让自己正在做的业务快速增长的方式,但却苦于没有合适的人才和工具能帮你做到这一点。如果这是你正在面临的困境,那么不防试一下 GrowingIO。这款由前 LinkedIn 美国商业分析部高级总监、世界前十位前沿数据科学家之一张溪梦带队打造的工具没准可以帮上你。
衡量用户和产品关系的热度和健康度指标
GrowingIO 是什么?
简单来说,GrowingIO 是一家大数据分析公司,它提供的工具可以通过收集、分析产品的数据来为其提供企业业务增长解决方案。
详细来说的话,对于 GrowingIO 正在做的事情,张溪梦自然会有更生动的解读,他告诉 PingWest 品玩:
GrowingIO 把过去整个数据分析的流程,从采集、数据传输、输出存储、数据转化、可视化、高级分析模式这些所有的步骤通过一个产品展现给大家。企业不需要前端的工程师去布置代码,不需要大数据运维的人员去传输数据,不要数据仓库、集群,不需要闭源工具做数据提炼,也不需要做推荐算法工程师来做各种手动的统计学或者分析模型,这些功能都被 GrowingIO 做成一个产品,直接交付给企业业务端的人使用。
GrowingIO 有哪些特点?
看完 GrowingIO 对数据做了这么多复杂的处理之后,你大概会觉得这应该是一个需要不少练习才能掌握的工具,可在张溪梦看来,在 GrowingIO 的所有特点中,简单、速度快、高度智能、规模化是他们同时看重的。
简单:GrowingIO 经过一次部署之后,可以直接在 Web 或者 app 上操作获取数据,用户只要圈点网页中的某个元素就能实时获得用户与这个元素交互的情况。非常简单易用,任何一个人经过几分钟的培训就能用。
速度快:由于 GrowingIO 把整个数据分析流全部打通了,所以用户从需求提出,到最后结果的展示不再需要很多功能上的、工程上的或者业务上的流程,以前需要几个星期分析的工作,现在在几分钟之内就能实现。
高度智能:以前数据分析人员需要从报表中看出趋势,用各种不同纬度的报表找原因,但现在 GrowingIO 则具备一定的能预测力,能相对动态的帮助客户找到业务发展不利的原因,计算用户潜在流失的可能性。这其中内置了机器学习以及预算模型的能力。
规模化:张溪梦觉得自己在 LinkedIn、eBay 这些公司做的最重要的工作就是把数据分析的能力提供给各个不同部门的员工使用,所以 GrowingIO 也具备服务各个不同部门员工需求的数据分析能力。
GrowingIO 是如何协助用户优化企业运营效率的?
大头图好,还是小头图好?右下角三个分享按钮有人点吗?
在张溪梦看来,一个企业需要很有效率的进行运营,而运营的核心就是数据化。在我的要求下,张溪梦针对 PingWest 品玩的网站进行了一番分析,然后提出了若干可以优化的点,比如来说:
1:PingWest 网站文章内的图片都是可以点击并会跳转到新页面的,张溪梦看完之后就觉得这个点击没有直接的商业意义,而且如果在移动端的话,可能导致用户的跳出率很高。
2:用户打开一篇 PingWest 的文章后会看到巨大的头图,以及右下角的三个社交媒体分享按钮,那么对读者来说,大的头图好还是小的头图好?右下角的三个社交媒体分享按钮有人点击吗?
3:PingWest 文章页面支持无限翻滚,但右边广告位置却是始终不变的,那么如果用户翻滚五个页面看到的广告是相同的,好还是不同的好呢?
4:如果某类广告用户点击之后就没有再回到网站来,那么以后是否还应该展示这样的广告呢?
以上只是张溪梦提出的一连串疑问中比较容易说清楚的几个,不难发现,如果想做出决策、优化网站运营效率的话,自然需要数据来做支撑,而这些数据只需要在 PingWest 网站布一段代码就能轻松获取。
在 GrowingIO 上,用户可以通过热度和健康度这两个指数来衡量用户和产品之间的关系。对于企业来说,一个用户每天花很多时间在自己的产品上,但从来不贡献收益,这自然是不健康的;但如有有一个用户经常贡献收益,但停留时长却很短,这显然也是不可持续的。如果你想不断优化自己的产品,让它变得可持续的话,GrowingIO 的确值得一试。
来源:pingwest 作者:cyzhou
扫一扫 加微信
hrtechchina