2019年夏天,LinkedIn将提供共享InMails预览、即时工作通知和其他功能
LinkedIn Live是一项会议和活动的视频直播服务,仅在发布测试版几个小时后,LinkedIn就发布了一款面向招聘人员和求职者的新产品。今天上午,微软子公司预览了智能招聘体验,一个仪表盘,整理了LinkedIn现有的招聘套件(包括LinkedIn Recruiter,LinkedIn Jobs,和Pipeline Builder)在一个精简的界面上。
这项新功能计划于2019年夏末推出,有超过15项产品改进,其中几项将在未来几个月推出。
“LinkedIn上找工作的人比以往任何时候都多,”LinkedIn负责人才解决方案和职业发展的副总裁约翰•杰辛(John Jersin)在周一的电话会议上告诉记者。“这个新平台将允许(我们的)所有产品相互学习,这样,当你使用我们的各种产品时,每个系统中的匹配项都会变得更加智能。”我们在这个平台上建立的新界面将使招聘过程中的每一步都无缝衔接,也能让产品从一种直接过渡到另一种。
其中最引人注目的是推荐候选人(Recommended Candidates),该功能可以了解给定角色的招聘标准,并自动将相关候选人显示在专用选项卡中。LinkedIn说,随着时间的推移,随着招聘人员与LinkedIn超过6.1亿名会员中的潜在员工接触(或选择不接触),这些建议会得到改善。
LinkedIn表示,其人工智能驱动的搜索引擎利用了三个核心数据集对搜索结果进行排名:人们在个人资料上发布的内容,或招聘人员在职位描述中写的内容;搜索求职者和潜在雇主的表现,以及他们点击的人物和职位列表;并推断出一些特征,比如一个人可能没有在个人资料中列出的技能,但他们可能在之前的工作中学到了这些技能。这些综合起来,就能预测出最适合的工作和求职者。
“(我们将能够)根据客户定义的标准自动为他们生成搜索。(招聘职位)将能够根据一系列技术投资产生一系列推荐匹配,这些技术投资帮助我们实时了解招聘人员在我们的平台上做什么,以及他们与谁打交道,”Jersin解释说。“(我们一直关注)许多新建议——人工智能和机器学习正在提高求职者与机会之间的匹配率。”
智能招聘体验还可以在邮件中共享,这使得招聘团队成员可以查看候选人的通信,并添加注释、注释和同事提及。还有一个“批量拒绝”功能,允许招聘人员发送一个(或一组,视情况而定)令人失望的消息,以及个性化的信息。此外,在“招聘工具”(Recruiting tools)选项卡下还有一个侧边显示的个人资料功能,可以更方便地查看求职者的个人资料和个人信息,还有即时工作通知功能,可以向那些表示正在积极寻找合适人选的合格求职者发送推送通知。
“我们从求职者那里听到的最深刻的见解之一是,他们希望新工作一发布就得到。”所以我们正在实时更新我们的工作数据库。通过即时的工作通知,发布一份工作“将向与该工作匹配的合格求职者发送实时通知,让他们能够在该工作发布到网上的头几分钟内点击,然后立即开始申请。”
雇主很可能会采用承诺减少传统招聘令人头疼的工具。美国人力资源管理学会(Society for Human Resource Management)发布的一份报告显示,企业雇佣一名员工的成本约为4129美元。在卫生服务和金融服务等行业,找到合格的候选人平均需要44到50个工作日。
“整个事情,我们做得更好,我们将继续专注于提高质量,我们建议或......出现在搜索结果中,”Jersin说,“对招聘者来说意味着什么,他们将会看到更多的合格候选人……出现在搜索结果中。这意味着对于求职者来说,他们将会花更少的时间去申请那些不适合他们的工作——那些他们不符合条件的工作,或者在求职过程中的某个时候他们对这些工作不感兴趣。”
在今天的新闻发布之前,领英推出了新的求职者跟踪系统、Talent Hub、以及更新的招聘平台和领英学习的技能洞察力。2018年初,LinkedIn推出了一项功能,向潜在求职者展示他们申请某一特定职位前的通勤时间,以及一项工具,让求职者可以在申请某一职位之前,向他们在一家公司认识的人请求推荐。
以上为AI翻译,内容仅供参考。
原文链接:inkedIn previews shared InMails, Instant Job Notifications, and other features coming summer 2019
候选人匹配
2019年02月13日
候选人匹配
人工智能在人力资源领域的崛起:将影响招聘和招聘的9个显著发展The Rise Of AI In HR: Nine Notable Developments That Will Impact Recruiting And Hiring
人工智能(AI)和机器学习(ML)最近一直是新闻热点,而且有充分的理由。人工智能和ML技术正以惊人的速度发展;根据斯坦福大学(Stanford University) 2017年人工智能指数(AI Index)的年度报告,自2000年以来,开发人工智能系统的活跃美国初创企业数量增长了14倍。
许多人想知道人工智能技术的持续快速发展将如何改变企业的运营方式。特别是,人工智能可能会彻底改变和重新定义招聘和招聘过程。我们邀请了福布斯人力资源委员会的9位成员分享他们最感兴趣的与人工智能相关的发展。
福布斯人力资源委员会的成员讨论了人工智能可以给招聘和招聘带来的令人兴奋的变化。照片由个别会员提供。
1。更准确的候选人匹配
为了更好地找到合适的候选人,理解一份简历的能力应该是一种人类技能。然而,事实证明,人工智能在这方面要比经验丰富、技术娴熟的招聘人员强得多。改进这部分流程可以让招聘人员有更多时间来培训和指导求职者和招聘经理,最终改善招聘人员的经验。-卡拉·瑞福德,比彻马登
2。更具包容性的员工队伍
人工智能对招聘和招聘过程最令人兴奋的影响是,在评估求职者是否能为企业提供更多样化、更具包容性的劳动力时,消除潜意识的偏见。-雪莉·马丁,OmniTRAX
福布斯人力资源委员会是一个邀请所有行业的人力资源主管的组织。我有资格吗?
3.更少的管理任务
大多数人力资源专业人士都认识到,人工智能永远不会取代招聘中的人为因素。不过,它将减轻一些行政工作的负担,例如采购、筛选和进行初步面谈。这将使招聘经理有更多的时间与求职者建立有意义的关系,从而缩短填补空缺的时间,提高员工的留任率。- John Feldmann, Insperity
4。能够找到与现有员工技能相匹配的求职者
招聘过程中面临的最大挑战之一是,要确保人们清楚地了解和沟通该职位成功的真正要求,以便将招聘目标锁定在合适的候选人身上。可以想象,人工智能可以用来比较当前在职员工和求职者的技能和行为。- Joyce Maroney, Kronos Incorporated
5。积极的候选人选择
我很高兴看到人工智能如何帮助招聘人员提高寻找和吸引求职者的能力。鉴于目前的就业市场,招聘变得越来越主动。当他们的简历不符合你的工作描述时,寻找优秀的候选人可能会很困难,但人工智能技术可以极大地提高主动寻找过程的效率。- Steven Jiang, Hiretual
6。加速Times-To-Hire
人工智能已经改变了用人单位和人力资源公司的游戏规则,通过与求职者互动,迅速确定他们是否适合某个适合自己的职位,从而缩短了符合条件的时间和整体招聘时间。随着人工智能驱动的招聘变得越来越复杂,雇主将从更快速的招聘时间中获益匪浅。- Genine Wilson, Kelly Services
7。更好地介绍申请者
对于人工智能的招聘,我真的很兴奋。有很多机会,比如更好地了解你的求职者,了解他们希望从工作中得到什么,然后将这些机会与招聘经理的要求或要求相匹配。它为招聘过程增加了更多的价值和效率,并将使求职者的经历更加愉快。- Adam Mellor, ONE Gas, Inc.。
8。更容易的候选过滤和跟踪
筛选潜在的候选人可能是乏味和费时的。然而,我对像谷歌Hire这样的人工智能技术感到兴奋,它可以帮助招聘人员筛选出候选人,跟踪以前在贵公司申请过的候选人,并将目前的申请人与最匹配的职位匹配起来。-米歇尔·马基,斯基尔帕斯
9。工作人员预测
如果AI可能需要看数据,当公司需要雇佣——无论是通过kpi涉及生产力、卷、营业额、劳动时间等等,人力资源可以招募速度远远超过他们可以识别工作时当有多少新雇佣的人。通过让团队返回当前用于决定是否、何时以及应该雇佣多少人的时间,人工智能将简化流程。- Sarah O 'Neill - SHRM-SCP, Humano LLC
以上来自福布斯网站,由AI翻译,HRTech会员推荐:
https://www.forbes.com/sites/forbeshumanresourcescouncil/2018/11/28/the-rise-of-ai-in-hr-nine-notable-developments-that-will-impact-recruiting-and-hiring/#3c2f43844ced
候选人匹配
2018年11月30日
候选人匹配
JOSH BERSIN:人工智能招聘来临,面试会像恐龙一样消失吗?
文/JOSHBERSIN
公司做的最重要的事情之一就是雇人,这仍然是一门神秘的艺术。大多数公司会看求职者的工作经历,他们会打电话给推荐人,给他们做测试,然后带他们去面试。尽管如此,人力资源主管告诉我,他们仍然有25%的几率会犯错误。
为什么?如今,成功的标准是由认知能力、文化契合度以及求职者与公司抱负之间的契合度决定的。德勤(Deloitte)今年早些时候在Bersin完成的一项研究发现,业绩最好的公司在选择时使用这些“非简历”因素的可能性要高出90%,更能证明招聘变得多么复杂。
这种趋势越来越明显。大多数关于未来工作的研究显示,对个人沟通能力、创造性解决问题的能力以及通常被称为学习敏捷性(即求职者的学习能力和学习意愿)的需求在稳步增长。这些都是在你的大学背景,GPA,甚至工作经历中看不到的。
事实证明人工智能非常适合这个问题。供应商现在正成功地应用智能算法来创建测试、模拟,甚至分析视频求职面试,以提高招聘效率。而其中一些评估可能会扰乱市场中的一些重要力量。
这里有一些例子。
由哈佛大学(Harvard)和麻省理工学院(MIT)的神经科学家弗里达•波利(Frida Polli)创办的Pymetrics公司发展迅速。该公司开发了一系列认知和神经学测试,这些测试既有趣又容易进行,但在工程、销售和客户服务等方面具有直接的统计相关性。通过这些测试,该技术可以评估多达90种不同的性格特征,实际上消除了招聘中的偏见和歧视。联合利华(Unilever)、凯悦(Hyatt)、埃森哲(Accenture)和特斯拉(Tesla)等公司都对这一系统深信不疑,它们和其他公司几乎不需要看简历和教育背景就能招聘到这些职位的顶级候选人。
Pymetrics公司甚至通过共享算法审计工具,开放了他们的工具,以减少前瞻性偏差。他们理解在这些系统中减少偏见的巨大挑战,因为大多数培训数据是基于先前的雇佣成功。该公司最近获得了4000万美元的额外资金,其中包括Workday的投资者之一。
资金充裕的Imbellus公司刚刚宣布了一项1450万美元的融资计划,以帮助其继续开发基于模拟的评估系统,该系统目前被麦肯锡用来评估新员工的问题解决方案。我试过这些模拟测试,它们相当令人费解,也很有趣,它们显然测试了复杂的思维方式,远远超出了典型的SAT或其他测试。首席执行官丽贝卡•坎塔尔(Rebecca Kantar)专注于取代日益老化和过时的SAT考试(这是一个近10亿美元的市场),以改变公司招聘方式,从而改变大学评估优秀学生的方式。
HireVue是视频面试领域的先驱之一,现在每一分钟视频都能捕捉到100多万个关于求职者的有意义的数据元素,还能告诉经理求职者在回答问题时的诚实和自信。他们也有喜欢这项技术的客户,特别是在零售、客户服务和酒店领域的大量招聘。希尔顿的招聘多样性增加了16%,使用这项技术的效率大大提高。该公司目前拥有600多名客户,并提供了500多万次视频采访。
另一家由印度工程师创立、资金雄厚的公司PhenomPeople,已经彻底改造了招聘流程,将重点放在端到端营销上。招聘、招聘、内部职业流动和管理评估都是相互关联的,因此PhenomPeople决定建立一个看起来像职业门户的招聘系统。现在人工智能增强了这种能力,让招聘人员比以往更容易找到合适的人;候选人沟通是营销人员瞄准广告的方式;并跟踪候选人(内部和外部)的行为,以帮助个性化的求职体验。他们称之为人才关系管理(TRM),这是一种很好的描述方式。
当然,LinkedIn刚刚宣布了一系列新的基于人工智能的就业安置和搜索工具,以及它自己的求职者跟踪系统。LinkedIn的新工具可以让招聘人员更有效地找到合适的候选人,写出最有可能找到合适候选人的工作描述,现在提供了大量的数据,以帮助定位合适的人口、地点、经验和其他特征。所有这些都是为了消除这个错误的过程,让很多人来面试。
一个名为Orderboard的新公司。人工智能主要关注最抢手的工作(网络安全专家、人工智能工程师等),它不仅能评估能力和职位匹配度,还能将个人与被聘用团队的实际构成匹配起来。Orderboard公司的人工智能能够帮助招聘人员将他们所能找到的候选人的质量提高一倍以上,而且它的“吸引力算法”使公司几乎增加了50%的可能性,难以找到的候选人会接受电话或考虑一个职位。
此外,人工智能还有一个巨大的机会来改善筛选。像Mya(这一领域的先驱)、Olivia、Myra、IBM Watson招聘人员以及一个名为Yva的令人兴奋的聊天机器人正变得越来越聪明。我看过很多这样的工具,它们积累了越来越多关于候选人问的问题类型的情报,现在可以帮助招聘人员花更多的时间寻找和推销候选人,减少筛选的时间。
(聊天机器人市场非常庞大,供应商们应该开始关注应用领域。要确保你和供应商的谈话集中在招聘上,而不是一般的聊天。)
在人工智能和认知技术为人力资源增值的所有潜在领域中,这可能是最大的。虽然这项技术还很年轻,但成功的故事现在已经很普遍了,所以我认为每个公司都应该在他们要做的事情清单上确定基于人工智能的评估。
当然,所有这一切的风险在于人工智能以某种方式给系统引入了偏见,因此这些供应商正在努力确保他们的系统是公正、透明和安全的。在大多数情况下,公司会首先对这些系统进行测试,以确保这些算法不会无意中再现面试中的“人性化”偏见。
Facebook在这方面遇到了麻烦,因为其基于算法的招聘广告系统使得招聘人员可以根据年龄进行歧视。因此,您必须确保供应商精通这些问题。
对于求职者来说,我知道这有点残酷,但请记住,没有雇主愿意招错人。这些工具也会让你的生活变得更轻松,因为你不会觉得需要在面试中度过美好的一天来得到适合自己的工作。
我将继续观察这个空间的增长,但现在我非常乐观。(我追踪了1400多家人力资源科技公司,其中40多家专注于人工智能评估,这是最大的增长类别之一。)
作为一名分析师,我对评估领域进行了多年的研究,在这里我看到了价值的显著变化——由于招聘是我们作为领导者所做的最重要的事情,这是人力资源技术能够真正帮助一家公司超越的领域。
以上为AI翻译,内容仅供参考。
原文链接:AI Comes To Recruiting: Will Interviews Go The Way Of The Dinosaur?
候选人匹配
2018年11月03日
候选人匹配
评估技术开发商Imbellus宣布获得1450万美元 A轮融资,目前已筹集2300万美元
据美通社2018年10月31日报道,基于模拟的评估技术开发商Imbellus宣布结束由Owl Ventures领导的1450万美元 A轮融资。该公司目前的总资金达到2300万美元,包括Upfront Ventures和Thrive Capital在内的先前投资者与Rethink Education一起参与了此次投资。
“Imbellus团队的成就代表了改善教育与就业生态系统评估的独特机会,” Owl Ventures的Ashley Bittner说。“这项工作对K-12系统的未来产生了影响。它是关于实现一种专注于解决问题,系统思考和创造力等技能的教育范式。”
Imbellus不是将评估映射到大学的学术要求,而是与以创造力或解决问题等技能而闻名的组织合作,研究这些技能在现实世界中的应用。然后,Imbellus将观察到的技能和属性转化为学习科学和心理测量学的语言,以设计复杂的挑战,通过抽象的,基于模拟的评估将问题解决背景带入生活。
“我们正在努力将内容掌握与对潜在认知技能和能力的评估脱钩,以便不仅了解人们所知道的内容,还了解他们的思考方式,” Imbellus的创始人兼首席执行官Rebecca Kantar说。“我们的长期目标是重新定位教育系统,培养提出正确问题的思想,想象下一个要解决的问题,以及驾驭复杂系统。这是为了让所有学生都能做好公共教育的承诺,而不仅仅是对于最富有的10%。“
自2016年推出以来,Imbellus的学习科学家,游戏开发人员,AI / ML工程师和心理测量学家团队与评估和评估最前沿的研究人员合作,包括国家评估,标准和学生测试研究中心(CRESST) )在加州大学洛杉矶分校。
“在我们发现自己陷入前所未有的混乱中,理解并准确衡量个人解决问题的无数方式对于更好地将人们与工作相匹配将变得越来越重要。在麦肯锡,了解人们如何思考对我们来说一直很重要,而不仅仅是他们所知道的,“ Keith McNulty说麦肯锡公司数字与人力分析总监,自2017年起与Imbellus合作,将其数字化,基于情景的评估作为招聘和招聘流程的一部分进行试点。“Imbellus”技术正在帮助我们将案例研究访谈的原则扩展到更广泛的人才,提供引人入胜的体验,使他们能够解决我们所解决的问题,同时向我们提供有关他们如何思考的准确而详细的信息关于问题。“
Imbellus评估不是评估内容知识和有限的学习技能,而是利用自然世界模拟环境中的多步骤丰富场景。与专注于工作记忆,处理速度或思维流动性的智商测试或神经科学游戏不同,Imbellus评估旨在量化将人类智能与机器智能区分开来的技能,例如批判性思维,决策制定和元认知。 。
支持Imbellus评估的技术平台通过使用虚拟世界来防止作弊和黑客攻击,该虚拟世界利用AI为测试者生成不断变化的场景,以完成任务,具有可靠的可比性。
以上为AI翻译,内容仅供参考。
原文链接:Imbellus Raises $23 million to Take on the Testing Establishment
人工智能如何改变人才获取 How Artificial Intelligence Is Changing Talent Acquisition现在大家都在关注招聘AI,并就如何改变招聘方式进行了大量的讨论。招募人工智能是下一代软件,旨在改进或自动化招聘工作流程的某些部分。
作者:Ji-A Min
人工智能对招聘的兴趣已经由三大趋势引发
经济的改善:最近的经济收益创造了一个候选人驱动型市场,这使得人才竞争比以往更加激烈。这一竞争只会继续增加 - LinkedIn调查的 56%的人才招聘领导者认为他们的招聘数量将在2017年增长。
对更好技术的需求:虽然人才招聘预计会增加,但是66%的人才招聘负责人表示他们的招聘团队将保持相同规模甚至缩小规模。这意味着时间有限的招聘人员需要更好的工具来有效地简化或自动化他们的工作流程的一部分,理想情况下用于最耗时的任务。
数据分析的进步:随着技术变得快速和成本效益足以收集和分析大量数据,人才招聘领导者越来越多地要求他们的招聘团队展示基于数据的雇佣质量指标,如新员工的表现和营业额。
人工智能在招聘中越来越受欢迎,这为招聘人员提高他们的能力提供了令人兴奋的机会,但同时也存在很多关于如何最佳利用人才的困惑。
为了帮助您理解这一切,以下是招聘人工智能最有前途的三个应用程序。
应用#1:AI用于候选人采购
候选人采购仍然是一个主要的招聘挑战:最近的一项调查发现,46%的人才招聘领导表示他们的招聘团队正在为吸引合格的候选人而奋斗。
候选人采购人工智能技术可以搜索人们离线的数据(例如简历,专业投资组合或社交媒体档案),以找到符合您工作要求的被动候选人。
这种用于招聘的AI可以简化采购流程,因为它可以同时搜索多个候选人来源。这取代了自己手动搜索它们的需求,并可能节省每个请求的小时数。您节省采购的时间可以用来吸引,预选和面试最强大的候选人。
应用#2:人工智能进行候选人筛选
当您收到的75-88%的简历不合格时,很容易明白为什么简历筛选是招聘中最令人沮丧和耗时的部分。对于零售和客户服务等大批量招聘,大多数招聘团队没有时间手动筛选他们每个公开角色收到的数百到数千份简历。
AI筛选旨在自动执行简历筛选流程。这种智能筛选软件通过使用岗位聘用数据(例如业绩和营业额)为新申请人提供招聘建议,为ATS增添了功能。
它通过应用所学到的关于现有员工的经验,技能和其他资质的信息来自动筛选和评分新候选人,从而提出这些建议。这种类型的技术还可以通过使用关于以前的雇主和候选人的社交媒体档案的公共数据源来丰富简历。
AI进行简历筛选可实现低价值,重复性任务,并允许招聘人员将时间重点放在更高价值的优先事项上,如与候选人交谈并与其进行交流以评估他们的适合度。
应用#3:AI用于候选人匹配
与采购相比,候选人匹配可能是一个更大的挑战:52%的招聘人员表示,他们工作中最难的部分是从大型申请人池中确定合适的人选。
用于候选人匹配的AI使用一种算法来识别打开的请求的最强匹配。匹配算法分析候选人的个性特征,技能和工资偏好等多种数据来源,根据工作要求自动评估候选人。
例如,LinkedIn求职公告通过将求职者描述中的技能与其LinkedIn个人资料中的申请人技能进行匹配来对候选人进行排名。人才市场使用匹配算法来匹配候选人社区以开放角色。这些人才市场通常迎合特定的候选技能,如软件开发或销售。
人工智能匹配用于从那些已经加入并且正在积极寻找新角色或者对新机会非常开放的人中找出最合格的候选人。这意味着招聘人员不需要浪费时间来吸引那些对新角色不感兴趣的被动应聘者。
关于人工智能的力量,让候选人与工作岗位相匹配的不同观点,请参阅“ 尽管您阅读或听取的内容,采购活动和确实如此”。
AI和招聘的未来
专家预测人工智能招聘会转变招聘人员的角色。由于低价值,耗时的招聘任务通过人工智能技术变得简化和自动化,招聘人员的角色有可能变得更具战略性。
了解AI如何提高其能力的招聘人员将通过在采购,简历筛选和候选人匹配方面节省几十个小时,从而提高效率。
人工智能招聘承诺释放招聘人员与候选人交流的时间,以确定合适人选,并确定候选人的需求并希望说服他们担任角色。它有可能授权他们与招聘经理和人才招聘领导者合作,根据未来增长和收入计划积极的招聘举措,而不是反应性回填。
了解如何最好地利用这项新技术的招聘人员将获得更高的KPI,如更高的招聘质量和更低的营业额。
以上由AI翻译完成。供参考
How Artificial Intelligence Is Changing Talent Acquisition
AI for recruiting is on everyone’s mind these days with a lot of talk on how it’s going to transform recruiting. Artificial intelligence for recruiting is the next generation of software designed to improve or automate some part of the recruiting workflow.
Interest in AI for recruiting has been sparked by three major trends:
The improving economy: The recent economic gains have created a candidate-driven market that’s made competing for talent tougher than ever. This competition will only continue to increase – 56% talent acquisition leaders surveyed by LinkedIn believe their hiring volume will grow in 2017.
The need for better technology: Although hiring is predicted to increase, 66% of talent acquisition leaders state their recruiting teams will stay the same size or even shrink. This means time-constrained recruiters need better tools to effectively streamline or automate a part of their workflow, ideally for tasks that are the most time-consuming.
The advancements in data analytics: As technology becomes fast and cost-effective enough to collect and analyze vast quantities of data, talent acquisition leaders are increasingly asking their recruiting teams to demonstrate data-based quality of hire metrics such as new hires’ performance and turnover.
The growing popularity of AI for recruiting represents exciting opportunities for recruiters to enhance their capabilities but there’s also a lot of confusion about how to best leverage it.
To help you make sense of it all, here are the three most promising applications for AI for recruiting.
Application #1: AI for candidate sourcing
Candidate sourcing is still a major recruiting challenge: a recent survey found 46% of talent acquisition leaders say their recruiting teams struggle with attracting qualified candidates.
AI for candidate sourcing is technology that searches for data people leave online (e.g., resumes, professional portfolios, or social media profiles) to find passive candidates that match your job requirements.
This type of AI for recruiting streamlines the sourcing process because it can simultaneously search through multiple sources of candidates for you. This replaces the need to manually search them yourself and potentially saves you hours per req. The time you save sourcing can be spent attracting, pre-qualifying, and interviewing the strongest candidates instead.
Application #2: AI for candidate screening
When 75-88% of the resumes you receive are unqualified, it’s easy to see why resume screening is the most frustrating and time-consuming part of recruiting. For high-volume recruitment such as retail and customer service roles, most recruiting teams just don’t have the time to manually screen the hundreds to thousands of resumes they receive per open role.
AI for screening is designed to automate the resume screening process. This type of intelligent screening software adds functionality to the ATS by using post-hire data such as performance and turnover to make hiring recommendations for new applicants.
It makes these recommendations by applying the information it learned about existing employees’ experience, skills, and other qualifications to automatically screen and grade new candidates. This type of technology can also enrich resumes by using public data sources about previous employers and candidates’ social media profiles.
AI for resume screening automates a low-value, repetitive task and allows recruiters to re-focus their time on higher value priorities such as talking and engaging with candidates to assess their fit.
Application #3: AI for candidate matching
Candidate matching can be an even bigger challenge than sourcing: 52% of recruiters say the hardest part of their job is identifying the right candidates from a large applicant pool.
AI for candidate matching uses an algorithm to identify the strongest matches for your open req. Matching algorithms analyze multiple sources of data such as candidates’ personality traits, skills, and salary preferences to automatically assess candidates against the job requirements.
For example, a LinkedIn job posting ranks candidates by matching the skills on your job description to applicants’ skills on their LinkedIn profiles. Talent marketplaces use matching algorithms to match their community of candidates to open roles. These talent marketplaces usually cater to specific candidate skill sets such as software development or sales.
AI for matching is used to identify the most qualified candidates from those who have opted-in and are either actively looking for a new role or are very open to a new opportunity. This means recruiters don’t need to waste time trying to attract passive candidates who just aren’t interested in a new role.