• 业务影响
    CHRO如何在Agentic AI时代引领转型?-从工具使用者到组织智能架构师 HRTech概述:在AI快速演进的背景下,一种全新的人力资源战略正在崛起——Agentic AI。与传统自动化不同,Agentic AI 更强调“人机协作”,由HR主导、AI支持,共同实现更高效、更可信、更具战略性的决策模式。CHRO将不再只是执行者,而是组织智能的塑造者。他们将管理AI治理、建立伦理规范,并重塑人才战略与工作模式。 在AI技术席卷各行各业的当下,HR也站在了关键转型的风口浪尖。但这一次,变革不再是简单的流程自动化,而是一场围绕“智能协作”展开的深层重构。一场名为“Agentic AI”的革命正在悄然开启,而CHRO(首席人力资源官)正成为这场革命的核心引领者。 过去十年,AI在HR中的应用多集中于效率层面,例如自动筛选简历、智能排班或聊天机器人。人们习惯性地把AI当成一套“流程优化工具”。然而,在Agentic AI崛起的今天,这种理解已远远不够。 所谓“Agentic AI”,并非仅指具备感知、预测和处理能力的AI系统,更强调它在组织中作为“主动代理者”的角色。换句话说,它不再是“被调用的工具”,而是“共同参与决策与价值创造的智能个体”。 这对CHRO而言,既是一场挑战,更是一场空前的战略机遇。 CHRO的角色,将从“流程守门人”走向“组织智能架构师” 在《Agentic Carousel》报告中,HR的AI成熟度被划分为五个阶段,每一个阶段都对CHRO提出了新的要求。 在最初阶段,HR引入AI主要为了减负降本,例如RPA自动化、招聘系统、考勤管理工具。此时的CHRO,更多是“效率优化者”,关注系统选型与ROI。 进入第二阶段,AI开始赋能洞察。HR团队借助AI进行离职率预测、招聘渠道分析或薪酬对比。这一时期的CHRO,要成为“洞察翻译者”,能够将数据解读转化为业务语言,支撑高层决策。 而真正的转折点,发生在第三阶段——协作。Agentic AI的概念在这一阶段真正落地。HR开始引入智能推荐引擎、AI教练、员工发展路径推演等新型产品。AI不再仅服务于流程,而是与HR共建体验。CHRO的角色也随之转型,成为“人机协作推动者”。 接下来,是最难但也是最关键的第四阶段:信任建立。AI的使用引发隐私、偏见、透明度等伦理问题,这一时期的CHRO,不再只是HR部门的负责人,而是组织中AI治理的倡导者与建设者。他们必须从零建立伦理框架,设定治理边界,与法务、IT、风控部门紧密协作,确保AI在组织内“用得对、用得稳、用得明白”。 最终,顶尖的CHRO将进入第五阶段,成为真正的“组织智能架构师”。此时的AI已融入企业战略执行链条,HR也不再是传统的支持职能,而是构建“人+机”共生系统的中枢——既理解人性,也管理算法;既制定人才策略,也操控技术杠杆。 Agentic AI的核心:不是替代人类,而是赋能人类 Agentic AI强调的是主动性与人类协同。它不是接管HR的工作,而是把HR从繁杂冗余中解放出来,让HR团队更聚焦于影响力建设、战略落地与文化引导。 在这种模式下,CHRO的重点工作也随之改变。他们不再只关心绩效制度是否公平、薪酬是否具有市场竞争力,而是开始构思: 我们的AI招聘系统是否存在潜在偏见? 员工是否信任他们的职业成长轨迹是AI建议的? 组织是否具备基于AI洞察灵活重构团队的能力? 我们是否已建立起可以透明追责的AI治理体系? 这些问题,过去并不属于HR的核心关注,但如今,CHRO必须站在这些议题的最前线。 三个关键行动,构建AI时代的战略型HR中枢 首先,CHRO要搭建AI伦理与治理机制。这不是IT或法务部门的任务,而应由HR牵头,设立跨部门委员会,定义AI的边界与员工知情权,推动透明与信任的组织文化。 其次,要推动技能结构的系统性升级。AI不会自动提升组织智能,它需要人类理解、引导、解释。CHRO要重构培训体系,将AI素养、数据分析、跨职能协作、文化演进等能力融入人才发展路径。 第三,要以**“战略运营核心”的定位重塑HR架构**。不再把HR当作后台,而是将其升级为企业的“智能中控室”。通过AI与人协同,HR能实时洞察员工状态,预测团队动能,辅助管理层制定业务决策,真正参与业务成长。 未来的HR,不是更自动化,而是更智能化、更人性化 如果说过去的HR转型靠的是系统实施、流程重组与服务共享,那么未来的HR转型靠的将是战略主导、文化重塑与智能融合。 Agentic AI不是一项技术趋势,而是一场范式转变。它要求CHRO具备前所未有的综合能力——理解人性、驾驭技术、治理复杂系统、引领组织文化。 这正是未来最强CHRO的进化之路。
    业务影响
    2025年07月03日
  • 业务影响
    麦肯锡:AI赋能职场,企业如何跨越管理障碍,实现智能化未来?员工对 AI 的适应速度远超领导层的预期 AI 如何重塑职场? 人工智能(AI)正在以惊人的速度重塑职场生态,许多企业正试图利用 AI 提高生产力、优化决策流程并增强市场竞争力。然而,AI 技术的广泛应用远非一蹴而就,企业的 AI 部署不仅涉及技术升级,更考验管理者的战略眼光和执行力。 麦肯锡的《Superagency in the Workplace》 这份报告深入研究了 AI 在职场中的应用现状,基于对 3,613 名员工和 238 名 C 级高管 的调查,揭示了企业在 AI 落地过程中的机遇与挑战。报告认为,AI 在职场的变革潜力堪比蒸汽机之于工业革命,但当前的最大障碍并非技术问题,而是领导层的行动力不足。 尽管 92% 的企业计划在未来三年增加 AI 投资,但只有 1% 认为自己 AI 发展成熟,表明大多数企业仍停留在 AI 试点阶段,尚未实现全面部署。更值得注意的是,报告发现员工对 AI 的接受度远超管理层的预期,但企业的 AI 发展速度依然滞后。领导者的犹豫和执行力缺失,正成为 AI 规模化应用的最大瓶颈。 本文将从员工接受度、领导层挑战、组织架构变革、AI 治理、商业价值实现等多个维度,介绍报告的核心观点,并补充对 AI 发展的进一步思考。 一、员工比领导更快接受 AI,企业行动缓慢 报告的核心发现之一是:员工已经在积极使用 AI,而领导者仍然低估了 AI 的普及度。 数据显示: 员工使用 AI 的频率比领导层预期高出 3 倍,但许多企业尚未提供系统性培训; 70% 以上的员工认为 AI 在未来两年内将改变至少 30% 的工作内容; 94% 的员工和 99% 的高管都表示对 AI 工具有一定熟悉度,但只有 1% 的企业认为 AI 应用已成熟。 这一现象表明,AI 在企业中的主要障碍并非员工适应能力,而是管理层的滞后决策。许多企业高管仍然停留在探索 AI 价值的阶段,而员工已经在日常工作中广泛使用 AI 工具,如自动生成文档、数据分析、代码编写等。员工在推动 AI 发展方面的主动性,远远超出管理层的认知。 然而,企业未能为员工提供足够的 AI 培训和资源,导致 AI 的应用仍然停留在浅层次,难以转化为真正的生产力提升。例如,48% 的员工认为 AI 培训是 AI 规模化应用的关键,但许多公司仍未建立 AI 学习机制。企业如果不采取措施缩小这一认知鸿沟,可能会错失 AI 带来的长期竞争优势。 二、AI 领导力挑战:速度焦虑与执行落差 尽管 AI 的发展潜力巨大,但报告指出,47% 的企业高管认为公司 AI 发展过于缓慢,主要原因包括: AI 技术成本的不确定性:短期 ROI(投资回报率)难以量化,导致企业不敢大规模投资; AI 人才短缺:AI 相关技术人才供不应求,企业缺乏相应的招聘和培养体系; 监管与安全问题:企业在数据隐私、算法透明度等方面的担忧阻碍了 AI 落地。 这种“速度焦虑”让企业在 AI 发展过程中陷入试点—停滞—观望的循环: 试点阶段:部分企业已启动 AI 试点项目,如客服自动化、数据分析等; 停滞阶段:由于短期收益不确定,试点项目难以规模化推广; 观望阶段:企业倾向于等待行业先行者经验,而非主动探索 AI 的商业价值。 报告强调,AI 的落地不仅是技术问题,更是企业管理问题。领导者需要具备更强的战略决心,加快 AI 投资,并明确 AI 在企业中的角色,才能真正推动 AI 规模化应用。 三、如何实现 AI 规模化落地? 1. AI 人才培养 AI 的大规模应用依赖于系统性的 AI 人才培训。然而,报告发现,近一半的员工认为企业提供的 AI 支持有限。企业需要采取措施: 建立 AI 培训体系,涵盖 AI 基础知识、业务应用和 AI 伦理等内容; 推广 AI 试点项目,让员工亲身参与 AI 工具的开发和使用; 设立 AI 激励机制,鼓励员工利用 AI 提升工作效率。 2. 组织架构调整 AI 不能仅仅作为 IT 部门的创新项目,而应当成为企业整体战略的一部分。报告建议: 设立 AI 战略委员会,确保 AI 发展与企业长期战略保持一致; 推动 AI 在各业务部门落地,提升 AI 在实际业务流程中的应用深度; 强化 AI 风险管理,确保 AI 应用在数据安全和监管方面的合规性。 3. AI 治理:平衡速度与安全 虽然 AI 带来了极大的商业价值,但报告指出,企业在 AI 治理方面仍存在诸多挑战: 51% 的员工担心 AI 可能带来的网络安全风险; 43% 的员工关注 AI 可能导致的数据泄露; 企业需要建立 AI 伦理标准,确保 AI 透明、公正、合规。 四、AI 时代的商业价值:企业如何真正实现 ROI? 尽管企业对 AI 充满期待,但报告显示,目前仅 19% 的企业 AI 投资带来了 5% 以上的收入增长,表明大多数企业的 AI 应用尚未转化为可观的商业回报。为了提升 AI 价值,企业需要: 从“技术驱动”转向“业务驱动”,确保 AI 应用直接创造商业价值; 优化 AI 目标设定,明确 AI 在核心业务中的定位; 加强 AI 应用场景探索,特别是在客户服务、供应链管理等高回报领域进行深入部署。 AI 成败的关键在于管理层 AI 的成功不仅依赖技术本身,更取决于企业领导者的执行力和战略眼光。企业若要真正迈向 AI 时代,需要: 加速 AI 战略落地,推动组织变革; 加强 AI 人才培养,提高员工 AI 适应能力; 建立 AI 治理体系,确保 AI 安全合规发展。 在 AI 时代,最危险的不是迈得太快,而是思考得太小、行动得太慢。 附录:《Superagency in the Workplace》 下载
    业务影响
    2025年03月14日