• 人员分析
    未来人力资源的3个角色 文/Neelie Verlinden 我们经常谈论技术如何改变工作世界。的确,自动化和新技术的到来将导致某些工作岗位的消失,但更重要的是,它将促使我们很多人提高技能,以便为未来做好准备。 我们也谈到了人力资源在数字化转型中的作用;HR如何帮助组织和员工成为未来的证明?培训和发展在这一切中扮演了什么角色?我们在招聘候选人时应该寻找哪些技能? 我们不谈论的,或者至少不经常谈论的,是几年后人力资源会是什么样子。未来人力资源的角色是什么? 几周前,我的人力资源未来的朋友们发布了他们的2019年人力资源未来技能报告,这份报告是基于来自61个国家的400多名专业人士完成的一项调查。在这份报告中,正如它的名字所暗示的,他们讨论了人力资源专业人士为了将来证明自己所需要的一些必要技能。 在这篇文章中,我们将快速浏览一下我未来人力资源报告中提到的五项技能。我们还将尝试描述在不久的将来对HR至关重要的三个角色。 未来的人力资源技能 根据My HR Future的调查,当被问及“如果你能在2019年培养一项技能,你会选择什么?” 1. 人力分析 28%的受访者表示,2019年他们最想培养的技能是“人力分析”。 2. 软技能 15%的人认为2019年最重要的(软)技能是解决问题、分析问题、变更管理和谈判能力。 3.数字人力资源 12%的受访者希望提升自己在数字人力资源和人力资源技术方面的能力。 4. 战略人力资源规划 10%的受访者表示,策略性人力资源规划是他们最需要发展的技能。 5. 设计思维和利益相关者管理 分别有9%和6%的受访者认为设计思维和利益相关者管理是今年进一步发展的基本技能。 未来的人力资源角色 既然我们现在对人力资源专业人士认为重要的技能有了一个概念,我们就可以开始思考未来人力资源的各种角色会是什么样子。 虽然仍然需要一个全面的,通才型的人力资源专业人士,他们将需要配备一系列新的技能(如上所述)。 与此同时,在当前技术和全球劳动力水平发展的推动下,将需要人力资源专家,他们是各自专业领域的专家。 我们可以想象未来人力资源的几个角色(很多): 数字化的传教士 当前人力资源技术的爆炸式增长远未结束。相反,几乎没有任何人力资源部门没有一系列令人印象深刻的软件和工具来实现流程的自动化和数字化。仅在招聘技术领域,每周就有十几个新解决方案上市。 不用说,HR部门的每个人都不可能在所有其他活动之外还跟上最新的技术。特别是在未来几年,人力资源技术解决方案的数量可能会进一步增加。 因此,我们可以想象企业拥有自己的数字人力资源传道者。这个人的几个特点: 对人力资源技术充满热情的人 具备必要的技能,掌握新解决方案的本质及其对组织的潜在好处 精通数字和技术 始终愿意尝试新技术,不害怕质疑现有的解决方案 在实施和使用新解决方案时,能够让所有利益相关者都参与进来;传福音的那部分工作。 国际象棋大师 平均劳动力主要由全职员工组成的时代已经一去不复返了。今天的雇员是自由职业者、兼职人员、全职人员、合同工以及介于两者之间的所有人的混合体。 尽管这种新的组合当然有其优势——考虑灵活性、专业知识和对业务的不同视角——但它也有其挑战。 其中之一就是继任计划。 因为当你不知道你的需求是什么,或者你的劳动力中有多少是全职员工和临时员工时,你如何提前计划? 如果说接班计划在以前是一项挑战,那么当人力资源部门对谁将在何时离职仍或多或少有一定的了解时,现在就完全不同了。 举例来说,随着劳动力迅速老龄化或自动化程度的提高,工作和劳动力都将发生变化,由此带来的挑战。 我们不要忘记招聘,因为当我们谈论劳动力规划时招聘是等式中不可避免的一部分。 当我们考虑未来的人力资源角色时,一个在战略劳动力规划方面的专家,或者我们喜欢称之为真正的象棋大师,是不可或缺的。 这个人的几个特点: 有能力解决复杂难题的人 很有条理的 具有跳出思维定势,从不同角度看待问题的自然倾向 精通数字和技术 能够快速适应变化的环境 人员数据向导 没有数据就不可能有技术。绝大多数人力资源技术解决方案都是由数据驱动的,并具有分析功能。这是数据频谱的一面。 另一个是人员分析。由于基于云的人力资源系统的增加,越来越多的组织开始存储员工数据。然而,为了利用这些数据,他们需要知道如何使用这些数据的人。 这意味着——除了其他事情之外——数据科学家知道什么数据可以使用(科学地验证),数据应该存储在哪里(集中地),当然,还知道如何从it中获得对业务有积极影响的有价值和可操作的见解。 但这个角色需要更多。 数字人力资源使我们能够更聪明地思考哪些数据将带来更好的性能。基于这些信息,我们可以建立我们的系统,并开始进行人员分析。 因此,人员数据向导更像是一个人员数据和系统向导。下图很好地说明了这一点。 图片来源- PA: FOW会议 我们不要忘记这样一个事实:如果想让组织的其他成员理解,人员数据向导需要能够将这种“外国数据语言”翻译成普通人员的英语。 当谈到这个人的特点时,我们会想到: 非常严谨的人 他喜欢数字 有很强的分析能力 能够讲一个引人入胜的故事 精通数字和技术 合作的重要性 尽管未来的人力资源角色将(更加)专业化,但将它们视为独立的实体将是错误的。为了让每个职能真正发挥作用,我们的“特殊人力资源部门”需要密切合作。 因为,例如,当象棋大师开始规划劳动力和招聘需求时,他或她无疑将需要相关的人员数据和支持技术解决方案来创建一个可靠的战略。 这意味着他们需要同时咨询人员数据向导和数字化专家。 其他任何需要处理的人力资源问题也一样,无论是与绩效管理、学习和发展相关的话题,还是与入职相关的话题;为了制定出一个好的战略和执行方案,所有的人力资源部门必须通力合作。 最后一点 在一个自动化和新技术正在迅速改变工作世界的时代,人力资源将在帮助企业及其员工成为未来的证明方面发挥重要作用。 但在不远的将来,人力资源本身也会有很大的不同。 人力资源专业人士需要具备一系列新的技能,包括人员分析、数字人力资源、战略劳动力规划、设计思维和利益相关者管理。 虽然仍然需要一种全面、通才型的人力资源专业人员,但也需要人力资源专家。 以上为AI翻译,内容仅供参考 原文链接:3 HR Roles of the Future
    人员分析
    2019年04月30日
  • 人员分析
    建立未来绩效管理的5个方面 传统绩效管理模式的商业价值正在崩溃。绩效管理的传统年度评估模型可能会疏远有才能和典型的员工,而不是建立士气。用于提高性能的个人和企业工具和技术已经从根本上得到改善; 绩效管理系统没有。 认识到这些现实,越来越多的公司将绩效管理与运营成功紧密联系在一起,而不是与运营日程紧密相关。这种转变 - 使绩效管理更具商业价值相关性 - 正在对人力资本在企业中的管理方式产生巨大影响。由麦肯锡公司赞助的2019年绩效管理全球执行研究和研究项目的结果确定了绩效评估,问责制和能力方面的智能投资的五个关键方面: 1.按需反馈 正式反馈过程通常是定期的、敷衍的、有问题的。持续性现在成为王道。正如人们依靠Google Maps或Waze来管理旅行的实时期望一样,员工需要能够管理有关工作的实时期望。 绩效管理工具和平台应促进对个人进步,增长和发展机会的持续反馈。反馈将越来越多地以不同方式实现自动化,定制化,可视化和通信。管理人员必须确定如何最好地为其员工定义反馈体验。文化会更重要。高级管理层必须就绩效管理在组织中的目的制定共同观点。 2.超越今天的绩效标准 绩效管理现在意味着培养新的能力(如技能和创新),而不仅仅是提高现有的效率。这种区别不能被最小化或夸大。一些组织衡量员工的技能发展; 一些人衡量管理者是否是公司价值观的例证; 一些人评估了高管们在数字化转型方面的进展。 优先考虑和促进围绕这些不同因素的互动迫使高层管理人员重新审视他们的领导风格和实质。例如,在Ceridian,“我们赋予人们承担风险的能力,而不是因冒险而受到惩罚,”执行副总裁兼首席人和文化官Lisa Sterling说。她描述了该公司的首席执行官David Ossip如何支持自上而下的公司文化变革。“我经常告诉别人,'我宁愿你做出一个积极进取,具有创新精神和前瞻性思维的决定,而不是让你觉得舒服的事情。当你的CEO支持那种大胆的实验时,人们的决策就会发生变化。“ 3.团队评估更重要 增值流程和可交付成果 - 特别是那些涉及客户和客户的流程 - 越来越依赖于跨职能团队。鉴于全职员工、兼职员工、工作人员和地理位置分散的贡献者的混合,绩效管理仍必须在基于团队的结果的背景下进行评估。可靠地衡量团队绩效与衡量个人贡献一样重要。这对许多组织来说仍然是难以捉摸的。 “许多公司和人力资源作为一项职能面临的巨大挑战是我们如何从围绕个人建立的哲学和整个基础设施转变为关于团队和协作的环境,”人力资本临床副教授Anna Tavis纽约大学的管理层观察到,“我们还没有想出如何衡量和如何评估合作。” 4.民主化绩效提升 遗产绩效管理方法通常采取三管齐下的方法:确定高绩效者以促进和发展他们; 确定低绩效者,以便他们可能被淘汰。虽然几乎没有事,但稳定但统计上“平均”的表现者既不是绩效管理系统设计的重点也不是受益者。 市场领导者对人才,技术和人力资本开发的新结构和文化强调扰乱了这一点。人才评估和评估仍然是核心,但越来越多的组织采用数字媒体和平台来培养更广泛的员工队伍中的新能力和能力。提升“平均值”和“中位数”正在成为企业的优先事项。 教练 - 不仅仅是评级,排名和评论 - 正在成为新的绩效管理动态的一部分。数字经济学使这一选择更简单,更便宜,更具可扩展性。同样重要的是,可以快速衡量和评估这些人力资本投资的业务影响和影响。 5.人员分析 人员分析正在成为洞察组织中绩效意味着什么的主要来源。人力资源分析软件提供商Humanyze首席执行官本•瓦伯尔(Ben Waber)描述了一家财富 500强客户,该客户考虑采取行动,将新加坡数十个国家的800名高级管理人员合并。通过考虑移动成本,租金,工资和福利等传统指标,该公司得出结论,此举将导致每年节省600万美元。Waber断言,大多数以底线为导向的公司都会接受这些节省并“停在那里”。你会说,'我们正在存钱,所以我们会这样做。'“ 但是,该组织也承认了顶线和组织风险。Waber回忆说,他们决定认真分析“这将如何改变个人表现,而不是整个部门的表现”。通过人员分析,该公司得出结论,高级领导层之间的凝聚力增强将导致工作团队内部凝聚力大幅降低。对该团队的不利影响进行建模,该公司认为此举可能导致每年亏损1,100万美元。拟议的合并将打破宝贵的正式和非正式网络。 数字化详细说明了个人如何相互工作和沟通,这意味着人们的分析可以识别新的价值创造来源。 重新思考绩效管理需要高层领导重新考虑如何最好地投资并从他们的员工中获得更大的价值。这意味着愿意接受绩效管理的未来将有力地影响企业文化的未来。他们必须从今年的“绩效”中了解他们想要什么,而不仅仅是在战略未来。他们的组织是否准备好破坏自己,以确保有才华和典型的人都能成为他们最好的自己?现在,对高性能的承诺需要致力于高性能管理系统。 作者: Michael Schrage,麻省理工学院斯隆管理学院数字经济倡议的研究员。 Bryan Hancock,麦肯锡公司组织业务的合伙人和领导者。 这篇文章改编自2109年2月26日出版的麻省理工学院斯隆管理评论©麻省理工学院的“Performance Management’s Digital Shift”。  以上为AI翻译,内容仅供参考 原文链接:5 FACETS OF PERFORMANCE MANAGEMENT FOR THE FUTURE
    人员分析
    2019年04月15日
  • 人员分析
    员工体验:这比你想象的更棘手(也更重要) 文/JOSHBERSIN 为什么员工体验这个话题变得如此重要? 首先,“员工体验”这个词已经成为人力资源领域的一个巨大漩涡。我们多年来投资的所有项目(员工敬业度、多样性和包容性、领导力发展、绩效管理)都是员工体验的一部分。所以从某种意义上说,员工体验不是一个“程序”,而是一个“主题”(或者是一种心态)。 围绕这个主题,我们有数百种新技术工具来帮助诊断和改善员工体验。现在,每个调查工具、门户网站工具、移动应用程序和流程管理工具的网站上都贴有“员工体验”标签,告诉我们“这也会让你的员工体验更好。” 事实证明,我们现在所处的阶段是,大多数公司拥有太多的技术,而没有足够的时间。(现在时间是工作中最宝贵的资源。)因此,员工体验的一个主要部分就是简化技术体验,并设计“在工作流程中”发生的HR程序。 我正在启动一个大型研究项目,研究人力资源技术的应用(希望在今年秋季与大家分享研究成果)。(一项研究发现,59%的基于云计算的HCM买家没有达到他们希望的商业效果。) 第三,尽管这个主题充斥着书籍和文章,但真正提高员工体验的方法才刚刚出现。我正在与很多公司就这个问题进行合作,所以让我来分享一下我所看到的。 我们正在发现的方法论 如果你想提高你的员工体验、生产力、幸福感和产出,你应该怎么做?从哪里开始呢? 以下是我发现的一些事情: 设计思维:这真的很重要。现在是时候让你“同情”你的员工,跟随他们,调查和采访他们,在研讨会上和他们坐在一起。他们会告诉你是什么让他们在工作中心烦意乱,你会听到各种各样让工作变得困难的小事情。 从最基本的开始:首先看看工作中常见的“重要时刻”,然后把这些问题完全摆平。入职、换工作、搬家,以及所有的小事情,如果他们很难做到的话,都会让他们陷入困境。每个公司都可以研究这些主题并制定出更好的解决方案。 IT和财务合作伙伴:正如我在《员工体验平台报告》中所讨论的,这些问题都不是人力资源一个部门的问题。立即把财务和IT带入团队,它们将成为解决方案的一部分。 实践共同创建:您开发的每个解决方案都应该与业务人员和领导者“共同创建”。没有员工的参与,就没有办法提高员工的体验。我们必须与他们合作,修复旧的和坏的流程,设计新的系统,并使工作更容易。工作阴影是一个很好的实践使用。 看看新的工具:ERP和HCM平台可能没有你想象的那么有用。我在欧洲遇到的每一位客户都告诉我,他们的大型人力资源系统项目不一定能改善员工的工作经验。在某些情况下,他们确实这样做了,但前提是他们将平台项目视为“员工体验项目”。(更多关于员工体验平台) 实践过程简化:我发现的每个“过程协调”项目都归结于一件事。我们在商业上有把事情弄得太复杂的倾向。随着公司的成长、收购和变革,人们不断地在每件事情上添加新的步骤、批准和分支机构。 分割劳动力:我们不可能一次解决所有员工的所有经历,所以我们需要分割劳动力。在我们处理好基本问题之后。核心的人力资源实践,IT),我们可以针对最重要的劳动力或角色采取特定的策略。 成为一名商业顾问 在你完成了基本的工作之后,大部分工作都归结为工作简化——也可能包括重新设计工作。所以你要成为一名商业顾问,这是人力资源最好的地方。 需要考虑的几个技巧是:一些公司围绕客户和员工来设计组织,而不是围绕层级结构。西南航空公司围绕飞机和机组人员设计员工体验。与我交谈过的一家制造商围绕客户和服务工程团队设计了自己的经验。UPS的大部分业务围绕着驱动程序和配送中心进行设计。零售银行通常围绕零售分支机构进行设计。像T-Mobile这样的公司围绕销售团队进行设计。 这是一种方法,当您查看要解决的首要问题时,它可以让您集中精力。 像Marie Kondo一样应用 当我采访一些公司时,我发现这些项目就像读Marie Kondo的《改变生活的整理魔法》(the Life-Changing Magic of tidy Up)。公司必须告别我们不需要的流程,只保留他们喜欢的东西。 正如她在制作过程中所建议的,如果有什么东西放在壁橱的后面,把它拿出来,感谢它的服务,然后把它送出去。这个“连续整理”的过程是我们HR需要做的。 如何开始 让我来分享一些我看到的帮助你开始的事情。 避免没有重点的系统项目。我见过的几家公司告诉我,“我们正在实施一个新系统,因为我们有太多的系统,而且它们并不都是集成的。你猜怎么着。新的“体制”并不如他们所希望的那样顺利。为什么?他们不是围绕员工体验来设计的,而是围绕后端来设计的。如果你的目标是整合,这很好,但员工并不在意。他们想要的是简单、易用和一个地方。您可能不需要一个新的系统来完成此任务——坐在现有系统前面的员工体验平台可能要容易得多。 创建员工的角色。我遇到的一家公司(一家大型电视网络公司)创建了一组人物角色,他们现在用这些角色来设计解决方案。他们在业务单元的帮助下构建这些角色,然后根据这些角色映射所有不同的HR事务。每个角色都有自己的设计会议(与企业共同创建),他们在HR中创建了一个名为“创新顾问”的角色,以重新思考做事的方式。他们正在ServiceNow和其他工具中实现他们的许多新想法,但是让业务领导者兴奋的是角色。 看一切。我遇到的一家公司(可口可乐)发现,订购一张新员工信用卡需要52个不同的流程。我确信所有这些步骤在设计时都是经过深思熟虑的,但最终却浪费了员工的时间。重新设计这个简单的东西,再加上重新审视入职时的情况,使他们能够每年节省100万小时的员工时间。整个项目的成本立即得到了合理的证明,现在他们知道如何寻找其他浪费时间的过程。 在新员工培训工作。与我交谈的每一个人都告诉我,他们的入职过程既复杂又不完整。其中一家公司告诉我,他们的服务工程师在第一年的流动率为50%。这是因为公司真的没有战略性的入职流程,所以经理们正在填补这一空白。员工跳槽也是类似的机会。(你有没有过这样的经历:工作的第一周很糟糕?这在很长一段时间内都树立了不好的基调。 参与人员分析团队。这些问题都是关于度量的。人们在哪里浪费时间?做一件事要付出多少努力?人们在哪里点击,给谁发邮件?如果你有一个好的ONA工具(TrustSphere, Microsoft Workplace Analytics等),一个好的调查系统,以及一套好的工具,你就需要这些数据。SAP以80亿美元收购Qualtrics是合理的,因为它帮助记录了员工的反馈——这些数据和分析团队应该是您计划的一部分。 我采访过的一家公司使用了一个ONA(组织网络分析)工具来分析他们销售队伍中的员工生产力。数据发现,业绩较差的销售团队花在与经理沟通上的时间远远多于业绩较好的团队。当人力资源团队投入其中时,他们发现这些“表现不佳”的经理是在定价、配置和销售报价方面对销售团队进行微观管理。更强大的团队表现得比他们的同行更好。 答案吗?修正“销售员工体验”。 如何?该团队与销售主管合作,进一步授权销售团队定价、配置和谈判权限。 更多 我正在深入研究这个话题,并在此基础上开发一门完整的课程。让我总结一下,这是当今商业中一个重要的主题,实践和工具现在正变得越来越清晰。 最后,考虑一下我们为客户做了什么。旅程映射、细分和微目标定位是营销和产品管理中成熟的实践。现在他们来到了人力资源部。 只要记住“客户体验依赖于员工体验”。“每次我们让员工的生活变得更好,我们也会更好地为客户服务。 认真对待这个话题! 以上为AI翻译,内容仅供参考 原文链接:The Employee Experience: It’s Trickier (and more important) Than You Thought
    人员分析
    2019年03月27日
  • 人员分析
    大转变:2019年人力资源发展趋势? 文/ Rachael Klinefield 最近技术的发展和我们看待员工管理方式的转变正在改变人力资源行业。员工对公司的期望更高,人力资源部门正努力留住员工,改善工作场所文化。随着报告和招聘软件、员工数据和社交媒体触手可及,人力资源部门有了一个可以探索的新世界。虽然这些变革已经全面展开,但2019年将是一个精益求精的阶段,因为企业将逐步完善新的人力资源战略和理念。最大的主题问题是:公司如何更好地利用技术来做出更多数据驱动的决策?是时候摆脱数据分析的瘫痪状态,进行明智的员工管理了。 人员分析 2017年,研究显示,企业对人员分析的关注出现了戏剧性的倾斜——过去,这是一种没有得到管理层太多关注或资金支持的利基业务。计划实施数据和创建人员分析数据库的公司从通常的10-15%跃升至69%的多数。 已经实现了许多人员分析元素来改进日常操作。然而,数据完整性问题以及高管对自己的数据只有表面的理解一直是一个重大障碍。2019年将最终带来更多的理解和以前在人力资源行业不存在的数据掌握水平。管理人员可能会在如何使用他们的数据方面受到更多的教育,或者可能会出现数据管理方面的其他职位。 招聘技术 2019年,现代化的招聘管理系统将越来越受到依赖,进一步简化人力资源部门的招聘流程。企业再也不能采用过时的战略来发现、聘用和培养顶尖人才。 现代招聘软件可以在两个关键领域帮助公司:优化和目标。换句话说,该软件将在做脏活的同时为招聘人员节省宝贵的时间。人力资源专业人士将不再浪费时间盲目地寻找人才。相反,招聘技术将使企业能够在它们最有可能发现下一个大雇员的地方进行磨练。此外,该流程将从开始到结束进行优化,使HR能够在较少变化的情况下细化和完善他们的入职流程。 除了学习管理系统可以培养更好的团队培训和沟通,更多的公司会考虑机器学习和人工智能能提供什么。聊天机器人和类似的技术可能会承担更低级的任务,比如调度和提供基本信息。这将使人力资源专业人士腾出更多时间,与应聘者进行重要的关系建立活动。 雇主品牌 声誉管理长期以来一直是热门词汇,但企业将开始对客户和潜在候选人如何看待自己施加更多控制。公司将从简单地监控他们在网上的表现,转向引导雇主品牌走向他们想要的方向。随着公司需要更多优化和精简的软件来处理低级功能,我们将看到更多的软件集成。越来越多的公司开始采用“付出才能得到”的理念——建立一种基于团队价值和需求的企业文化。我们将看到公司进一步创造性地营销他们的雇主品牌和价值观作为中心焦点。 打破朝九晚五 人力资源部门终于习惯了工作角色变得越来越短暂的事实。到2020年,据估计大约有50%的美国的劳动力将是临时工、合同工或自由职业者。尽管许多人将这种转变视为经济混乱和无序,但企业有机会在必要的项目基础上节省资金并聘用有技能的人才。人力资源部门可以培育一个不断壮大的高素质人才网络,而不是与有限的员工群体结婚,这些员工可能具备或缺乏满足公司期望的技能和激情。这段时间为企业提供了一个摆脱导致员工敬业度危机的层级管理风格的机会。反过来,他们会转向以关系为导向的策略,雇佣符合他们文化和价值观的人才。帮助企业追踪并与人才网络保持联系的数字工具,将是未来的一项重要资产。 最后 尽管这些变化的最终结果无疑是积极的,但过渡期可能会让许多人力资源部门不知道首先该做什么。面对如此多的新选项和巨大的变化,您如何确定哪些软件真正适合您独特的公司需求并有助于促进变化? 2019年,人力资源革命将最终取得成果。员工敬业危机带来的发人深省的影响受到了人们的关注——生产率下降、高流动率以及缺乏团队协作和创新。人力资源主管知道,他们需要以一种前所未有的方式提升自己的水平。企业将开始看到过去几年劳动的成果——经历技术更新带来的成长阵痛,适应广泛而复杂的运营变化。随着节奏的加快,人力资源部门最终可以适应这些新的、授权的系统,以加强他们的劳动力。   以上为AI翻译,内容仅供参考。 原文链接:Big Shifts: What HR Trends Are Coming in 2019?
    人员分析
    2019年01月11日
  • 人员分析
    人员分析专家David Green:2019年人力资源的10个预测 文/David Green 1. 人性化 尽管人工智能无疑将彻底改变我们的工作方式,也将改变我们实际从事的工作,但有关机器将如何让我们失业和做苦工的反乌托邦评论完全是错误的。显然,我们正处于巨大的混乱之中,许多例行和重复的任务将会被自动化。然而,高德纳(Gartner)、世界经济论坛(World Economic Forum)和麦肯锡(McKinsey)等机构的研究都得出结论,人工智能创造的就业岗位将多于它将取代的岗位。人工智能创造的就业机会将使我们更有创造力,更有影响力,更人性化。正因为如此,我对2019年的所有预测中,贯穿其中的趋势(引用布鲁斯•斯普林斯汀(Bruce Springsteen)的话)是“一点人性化”。 (图1:2022年就业形势  资料来源:世界经济论坛) 2. 个性化 我对2018年的主要预测是,到2019年,随着人力资源部门继续从市场营销中汲取灵感,为员工创造个性化体验,我相信,这一变化将进入超速运行阶段。这是对过去“一刀切”的人力资源项目的一个根本性转变。业务需求、技术能力和员工自身的期望意味着,这种倒退的做法需要被扔进历史的垃圾桶。相反,个性化员工体验、提供支持(例如新员工入职、学习和调动)的建议,不仅有利于员工,而且有利于企业提供数据以支持战略、员工规划、挽留和业务业绩。 3.人员分析应用激增 随着人们对这一领域的兴趣和接受程度的加快,2018年对人们分析来说是具有里程碑意义的一年。一项企业研究论坛的研究发现,69%的大型组织现在都有一个人员分析团队,采用这个团队的鸿沟似乎终于被跨越了。人员分析团队的工作越来越平等地关注于为员工提供价值,以及驱动更好的业务结果。尽管,企业在实现持续卓越的人力资源分析方面仍面临许多挑战——尤其是在更广泛的人力资源职能和人力资源业务合作伙伴社区中灌输数据素养方面,但随着人力资源分析不断从外围转移到人力资源战略的核心,预计2019年将有更多企业采用这种分析。投资于人员分析的商业效益也变得越来越明显,Visier最近的一项研究发现,拥有高级人员分析能力的组织的利润率比同行高出56%。对我来说,这听起来像是对数据驱动型人力资源的完美号召。 (图2:人员分析的采用和业务价值的上升 来源:Corporate Research Forum and Visier) 4. 人员数据 伦理是人员分析最重要的方面,也是该领域最大的挑战。2018年发生了剑桥分析公司(Cambridge Analytica)丑闻、亚马逊(Amazon)有偏见的招聘算法的新闻,以及欧盟(EU) GDPR的引入。人员分析的潜力是巨大的,但出错并失去员工信任(或许无法挽回)的风险很高。所有在这一领域工作的人都有责任确保人员数据得到良好的利用。幸运的是,向员工提供个性化的建议和见解以换取他们与雇主共享的个人数据的趋势日益增长,这一领域正朝着正确的方向发展。再加上员工健康市场的大幅增长,预计“个人分析”(personal analytics)将出现增长。在“个人分析”中,员工将获得数据驱动的洞见,从而做出更好的个人和工作决策,并在2019年呈指数级增长。 5. 员工体验和健康是中心 我在2018年读过的最好的书之一是杰弗里·普费弗(Jeffrey Pfeffer)的《为了薪水而死》(Dying for a Paycheck),这本书对我们的工作场所如何“杀人”进行了发人深省的分析。Pfeffer论述到现代管理实践不仅给员工带来了压力,损害了员工的敬业精神,还损害了员工的身心健康,此外他还强调了现代管理实践给公司绩效带来的巨大伤害。这就是为什么人员分析领域和关注员工体验和健康一样重要。用于理解、设计和衡量员工体验的方法和数据驱动正变得越来越复杂、越来越广泛。这些工具包括主动和被动的倾听工具,如调查、在线测试和可穿戴设备,以及对非结构化数据(如文本)的分析,这些数据结合起来提供了员工思维、感觉和行为的信号。希望看到越来越多的公司为员工提供工具、数据和“小建议”,以支持锻炼、心理健康、工作/生活平衡,以及由此带来的动力、幸福感和绩效。 6. 社会资本的兴起 随着企业试图深入了解个人、团队和组织绩效与生产率的驱动因素,人们越来越关注于最大化组织社会资本的价值——即个人和团队在企业内部的联系方式。这使得使用组织网络分析(ONA)来映射关系、识别关键影响因素、突出员工面临的工作倦怠风险、洞察员工表现并支持创新的公司数量迅速增长(见图3)。随着越来越多的公司采用ONA, ONA供应商市场(见图3)正在蓬勃发展,并将在2019年加快步伐。 (图3:典型的ONA用例(左)和供应商市场扫描(右)来源:David Green, ONA在人员分析中的角色) 7. 轻推(NUDGE):行为经济学进入了人力资源领域 我去年的一个预测是,随着Humu的出现以及其他供应商在这一领域开发工具,我预计2019年将真正脱颖而出。总而言之,由于企业长期以来一直试图理解并影响消费者行为,人力资源部门在这里再次扮演着市场营销的角色。虽然人力资源领域的例子仍然短缺,但我知道许多人分析团队在这个领域进行了试验。其中之一是谷歌(看Prasad Setty在这里的讲话),在这里,人员分析团队承担的大部分工作都是研究,帮助培训谷歌员工如何做出决策,以及他们如何随着时间的推移改进这些决策。预计未来12个月,将会听到更多有关企业研究行为对员工、团队和组织影响的消息。 8. 人力资源技术市场不断创新和巩固 在“ UNLEASH”的一次后台谈话中,乔希•贝尔辛(Josh Bersin)向我透露,他目前正在追踪全球1400家人力资源公司。与此同时,领域内的投资也在增长,投资方面临的选择令人生畏。随着技术能力的加快,人力资源数字化转型和员工期望值的提高,投资、创新和困惑也必将增加。2018年,领英(LinkedIn)推出了人才洞察(Talent Insights),并收购了Glint, SAP斥资80亿美元收购了Qualtrics、Humu的出现以及越来越多令人印象深刻的初创企业的增长。希望在2019年有更多的创新和空间整合。 9. 对技能的关注加强 由于企业期望更敏捷,并为通过人工智能和自动化提供的挑战和机遇做好准备,因此劳动力细分的重点需要从角色转向技能。事实上,正如TI人才研究发现的(见图4),到2020年,在组织中,按技能/技能集划分的市场份额将增长两倍。成为一个以技能为基础的组织是一个重大转变,这需要时间,因此预计2019年将会有更多人力资源领导者、人员分析团队和供应商社区的推动。整个技能领域将持续影响劳动力计划(技能为未来劳动力组成)、学习(工人将需要新的技能在未来的工作场所)和人才收购(培养人才池,招聘新的技能,站点位置等)以及公司并购战略。 (图4:当前和2020年的劳动力细分 来源:TI人才) 10. 人力资源技能和能力的革命 人力资源是企业中最令人兴奋的工作领域之一。这在一定程度上是由于该功能可能面临前所未有的变化,以及人们对它需要为企业和员工提供的价值和影响的期望有所提高。因此,人力资源专业人员所需要的技能和能力也正在发生翻天覆地的变化。我最近与myHRfuture合作进行了一项调查,以了解这些技能是什么,以及哪些技能是人力资源专业人士最需要的。图5展示了这些技能。随着传统的人力资源专业机构努力将这些要求纳入他们的认证项目,预计将看到可选择的供应商(如myHRfuture)的崛起,以满足这一不断增长的需求。 (图5:未来的人力资源技能 来源:myHRfuture) 这是对2019年的10个预测,2019年将是一个繁荣的、以数据为导向、以员工为中心的一年。   以上为AI翻译,内容仅供参考。 原文链接:The Human Touch: 10 Predictions for HR in 2019 相关阅读: 员工敬业度3.0:Humu启动微动引擎 领英(LinkedIn)推出了人才洞察(Talent Insights) 重磅:领英收购了Glint SAP斥资80亿美元收购了Qualtrics
    人员分析
    2018年12月27日
  • 人员分析
    人员分析:为什么统计不是浪费时间 文/Erik van Vulpen 许多人力资源从业者都有人力资源管理研究或工业和组织心理学的背景,而这些研究严重依赖于向学生讲授统计数据。作为一名学生,通常很难想象为什么统计数据如此重要。特别是如果你不想成为一名学术研究人员,统计数据会让你感到浪费时间。我们大多数人都希望与人合作,只是“做”人力资源,与统计数据的相关性便开始缺失。 然而,正如大多数人员分析人士所知,人力资源中统计数据的应用是我们称之为人力资源分析的基础。了解统计数据,了解如何以不同方式查看数据,以及在需要时分析数据,有助于我们做出更好的决策。 事实上,这是我经常从统计学的学生那里听到的。在制定更好和基于证据的决策方面,没有什么比对基于统计数据的结论和基本理解更有帮助了。 人员分析统计 聚合多个系统的数据并创建HR指标的仪表板,如使用Excel,Power BI或R来制作可视化数据,是实现人员分析的重要步骤。 但是,如果事实证明您拥有的数据不具代表性,那么您的结论和决定会发生什么?如果您需要轻松检查数据的质量和准确性,并轻松删除偏差结果的错误异常值,该怎么办?能够系统地思考数据对于人员分析至关重要,并且知道如何检查相关性以及因果关系成为人员分析的核心。 统计上显着的异常值 统计数据是人员分析的重要组成部分,适用于各种分析。例如: 如果您的大多数人表现“满意”,您将如何区分好或坏的表现?对数据进行区分,以得出结论并充分理解,是人员分析不可或缺的。 或者,当您启动分析项目时,您是否发现数据有回归到正常平均值的趋势?分析项目通常是对组织中问题的响应,但这个问题可能是由数据中的偶发性异常值引起的。这意味着下次我们进行测量时,这个异常值将降低到正常水平,这被称为回归均值。 另一个例子是问卷的答复率。您上次参与调查是否在组织中的不同群体之间获得了相同的回复率?或者这是你没有检查的东西?要了解某些群体在您的调查中是否过多或不足,您可以使用一些相对简单的统计技术来检查这一点。 对于我们的读者,Daniel Kahneman的书《思考的慢与快》强调了对数据进行深思熟虑和系统思考的重要性。通常我们能够在看到信息后立即快速处理信息,但这会受到我们的偏见和其他情绪的影响。只有采取更加审慎和合乎逻辑的方法,我们才能开始做出更客观的决定。统计学的学生在这方面表现得更好,因为他们知道人们容易受到的许多谬误引导。   以上为AI翻译,内容仅供参考。 原文链接:People Analytics: Why Statistics Is Not a Waste of Time
    人员分析
    2018年12月19日
  • 人员分析
    人员分析:在人员流动模型中建立可解释性 文/Ridwan Ismeer 最近,我有幸与来自新加坡理工大学的一群才华横溢的学生一起工作。他们的任务是帮助构建一个非常普通的人员分析应用程序:预测员工流动率(此类应用程序的优点、相关性和伦理值得商榷,可以单独讨论)。 摘要:建立一个能够准确预测员工情绪的模型,在0-6个月,6-12个月和>12个月的时间范围内的周转风险。 这两项不可谈判的要求是: 1.准确性:真阳性高,假阳性低。大多数实践者会强调低假阴性,但我们有理由不这么做。 2.可解释性:在人员分析中,模型的可解释性是采用模型的关键。人员分析的最终用户通常想要理解为什么模型要预测它是什么。事实上,GDPR有新的规定要求人工智能的决定是可解释的。 现在,任何分析实践者都可以很快地指出,这两个需求之间存在一个内在的平衡。精确的模型很少是可解释的。可解释的模型很少是准确的。但我们想检验这个假设的二分法。因为在人员分析中,仅仅精确是不够的——它需要用户能够理解。 除了我们两个严格的要求外,我们还为团队提供了一个强大的人力资源指标列表、一个足够大的数据集以及评估以下算法所需的基础设施: 和往常一样,xgboost在预测营业额方面表现最好(引用Kaggle上最常用的算法之一)。事实上,它的TP和FP速率满足了我们对精度的要求。容易解释的模型,如GLM和逻辑回归只是没有比较。 然而,任何以前使用过这个算法的人都可以证明,要想弄清楚它的黑盒子里发生了什么是多么困难。我们可以告诉股东鲍勃的离职风险很高,但我们无法解释原因。 或者我们可以吗? 将可解释性构建到像XGBoost这样的算法中并非易事,但这是可能的。除了向涉众提供处于风险中的员工的姓名之外,我们还为他们提供了一个交互平台,用于修改现有的功能,并重新运行模型,以指向导致模型将其评为处于风险中的功能。如果鲍勃去年升职了,模特会得出同样的结论吗?是的,它将。如果Bob在一个较小的团队中,模型会得出相同的结论吗?是的,它将。如果他的工资比市场上的要高呢?不。瞧。 由于用户需要进行多次迭代才能更好地理解每个案例,因此需要进行大量的工作,但是它允许我们保持较高的准确性,同时为涉众提供必要的模型内部工作,以使其更易于解释。 一些免责声明:   1.本帖旨在解决可解释性和准确性之间的错误二分法,而不是鼓励使用个人离职模型。事实上,我甚至会说,诸如加薪和提供晋升等行动绝不应以离职风险为基础。这对精英文化来说可能是灾难性的。对一般离职动因的综合分析应该是离职模型所能做到的。 2.首先,关于可解释性的必要性有很多争论。埃尔德研究中心的约翰·埃尔德博士认为,人类过于依赖基于先前经验的确认偏差,无论如何都无法客观地解释模型的结果。辩论还在继续。点击这里了解更多内容。 3.图像中使用的数据完全是基于虚假数据,仅用于说明方法。 4.我有自己的看法。   以上为AI翻译,内容仅供参考。 原文链接:People Analytics: Building for Interpretability in Turnover Models
    人员分析
    2018年11月30日
  • 人员分析
    人员分析:构建数据驱动的人力资源功能 成功的人力资源领导者如何利用分析来优化员工队伍并创造真正的商业价值?Assurant数据分析信息管理高级总监Perla Sierra告诉我们更多信息。 当您投资,推动采用或尝试优化People Analytics的业务成果时,您的团队面临的三大挑战是什么? 在开始真正的分析之旅之前,必须评估数据的质量,必须同意一致的指标,并且必须实施隐私保护措施。虽然数据通常永远不会完美,但我们必须努力获得尽可能高的数据完整性,并且当存在数据缺口时,分析从业者必须了解数据机会并在任何分析练习中将其考虑在内。 尽管有关人员的数据已经存在很长时间,但人们将分析从预感和感觉转变为更有条理的方法已成为最大的挑战之一。将数据驱动的决策方法应用于人们面临的挑战是,使用公平竞争环境比较员工和绩效非常重要,这很难做到。要做到这一点,我们必须始终调整上下文。调整上下文涉及考虑数据中可能不存在的因素,或者它是否可能不明显。 例如,在比较相似或相同工作的绩效时,应考虑数据之外的其他因素,例如环境因素(即工作条件,经理等)。 在人员分析空间内制定数据驱动的决策可能会加剧紧张局势,因为人们更喜欢人类对算法判断的判断。事实是数据驱动的决策如果竞争场是均匀的,当然如果数据是准确的,那么就会消除偏见。基于数据做出决策无疑将提高组织的分析成熟度,并有助于在决策制定过程中采用更加公正的方法,同时加强组织的文化。数据的可用性提供了新的创新和新的见解。 对于想要成功构建,扩展和优化人员分析功能的人力资源领导者,您最重要的2-3个最实用技巧是什么?他们应该优先考虑什么? 高质量数据,数据安全性和数据隐私的可用性应该是实施人员分析功能的最前沿。如果没有这三个关键要素,那么成功构建和扩展成功的人员分析功能将更加困难。有时并非所有数据都是完美或准确的。在这种情况下,组织应考虑采用分阶段方法,该方法可以利用准确或至少足够好的数据来启动分析过程,而不是等待所有数据准确。 不幸的是,分阶段的方法需要更长的时间,并且在增量成本方面可能会花费更多,但是,如果您只是选择在没有整个数据范围之前选择不继续前进,那么您应该考虑可能遗漏的无形机会成本。这是一个你必须对不舒服感到舒服的情况,并通过“足够好”的数据推进。我会考虑创建数据委员会和数据管理员的最佳实践,这可以推动数据标准化和质量并推动数据治理。 在组织的人员分析成熟度之旅中,2-3个关键里程碑是什么? 让我们从头脑开始。最终目标是让企业将人员分析嵌入业务决策中。我们怎样才能最好地完成这项工作?该数据必须是可靠,安全,维护,一致的,但是,它并不一定是完美的。人力资源合作伙伴必须确定影响业务的人员问题,这些问题可以在流程早期确定,甚至可以完全消除。在人力资源合作伙伴和商业合作伙伴必须协同工作寻找机会获取洞察力并在适当的时间向适当的受众提供可操作的见解,并最终在可能的情况下提供规范性和预测性分析。人力资源团队必须与业务领导者,一线经理,客户,供应商和其他人合作,以识别机会,传播意识,形成深层合作伙伴关系,并提高组织成熟度。 人力资源如何增加自身的分析成熟度同时增加业务的一些例子是提供以下内容:监控员工保留,培训,内部流动性,技能集评估,将招聘评估与绩效指标相关联,确定未来资源需要。 在人力资源组织中构建数据驱动型文化时,您采用了哪种方法? 在构建数据驱动型文化时,我遇到的最有效的技术是与不同的内部业务,部门,分析从业者甚至外部资源建立业务合作伙伴关系。每个人带来的人和体验的多样性在创造性解决问题和创新方面提供了最多的帮助。每个人都通过不同的视角看待机会,这种整合创造了强大的协作模式,使组织受益。通过采用多元化的文化和整合思维伙伴,可以提供建设性的论据,敢于不同意,并准备改变主意,你真正将组织推向最高水平,不仅仅是合作,买入和接受,而是你整个组织的分析成熟度越来越高。开放是真正伟大事物的开始。随着合作和沟通的继续, 2020年及以后,您亲自跟踪的人员分析和劳动力绩效空间的2-3大趋势是什么? 就像消费者一样,员工也希望为他们量身定制解决方案,而不是一刀切的方法。 机器学习技术使组织能够为从人才获取到内部移动,学习,团队建设和其他领域的所有领域的员工量身定制个性化体验,从而提高员工敬业度。机器学习不仅可以用于个性化体验,还可以提供最佳的团队整合,以及基于通过性格测试,社交网络,调查或其他方式获得的数据获得最佳积极成果的内部移动机会,从而创建一个爆炸性的人力资源转型,员工敬业度和减少营业额。当然,这些想法也可以针对承包商,这也将为投资带来巨大回报。 员工和承包商希望提供给客户的相同个性化体验,这不应该让我们感到惊讶,因为客户,员工和承包商都是人。我希望看到更加注重将员工敬业度与生产力水平和业务成果联系起来。   以上为AI翻译,内容仅供参考。 原文链接:人员分析:构建数据驱动的人力资源功能
    人员分析
    2018年11月22日